Approaches to determine pesticides in marine bivalves.

Anal Bioanal Chem

Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042, La Rochelle Cedex 01, France.

Published: July 2023

AI Article Synopsis

  • Agricultural runoff introduces pesticides into aquatic ecosystems, leading to accumulation in marine bivalves that poses risks to both human health and aquatic life.
  • Most research has focused on older pesticide generations, with limited studies on newer pesticides due to methodological difficulties that need addressing.
  • New extraction methods using eco-friendly materials and advanced mass spectrometry techniques offer promising results for detecting a broader range of pesticides in bivalves, improving the reliability of future studies.

Article Abstract

Due to agricultural runoff, pesticides end up in aquatic ecosystems and some accumulate in marine bivalves. As filter feeders, bivalves can accumulate high concentrations of chemicals in their tissue representing a potential risk to the health of human and aquatic ecosystems. So far, most of the studies dealing with pesticide contamination in marine bivalves, for example, in the French Atlantic and English Channel coasts, have focused on the old generation of pesticides. Only a few investigated the newly emerging pesticides partly due to methodological challenges. A better understanding of the most sensitive and reliable methods is thus essential for accurately determining a wide variety of environmentally relevant pesticides in marine bivalves. The review highlighted the use of more environmentally friendly and efficient materials such as sorbents and the "quick easy cheap effective rugged safe" extraction procedure to extract pesticides from bivalve matrices, as they appeared to be the most efficient while being the safest. Moreover, this method combined with the high-resolution mass spectrometry (MS) technique offers promising perspectives by highlighting a wide range of pesticides including those that are not usually sought. Finally, recent developments in the field of ultra-high-performance liquid chromatography coupled to MS, such as two-dimensional chromatography and ion mobility spectrometry, will improve the analysis of pesticides in complex matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-023-04709-4DOI Listing

Publication Analysis

Top Keywords

marine bivalves
16
pesticides
8
pesticides marine
8
aquatic ecosystems
8
bivalves
5
approaches determine
4
determine pesticides
4
marine
4
bivalves agricultural
4
agricultural runoff
4

Similar Publications

Heavy Metal Distribution in Aquatic Products from Eastern Guangdong and Associated Health Risk Assessment.

Toxics

December 2024

Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou 515063, China.

With the rapid industrialization and urbanization of coastal areas, marine pollution (such as heavy metals) is increasingly contaminating the environment, posing significant public health risks. Eastern Guangdong, a key aquaculture and fisheries hub in China, has a growing market for aquatic products. Heavy metals persist in the environment and are difficult to degrade and bioaccumulate in marine organisms through the food web, presenting carcinogenic and mutagenic risks to humans, as top predators.

View Article and Find Full Text PDF

Long-chain polyunsaturated fatty acids (LC-PUFAs) are crucial for human health and cannot be produced internally. Bivalves, such as oysters, serve as valuable sources of high-quality PUFAs. The enzyme fatty acid desaturase (FADS) plays a key role in the metabolism of LC-PUFAs.

View Article and Find Full Text PDF

A New Bivalve Species of the Genus J. E. Gray, 1828 (Bivalvia, Venerida, Cyrenoidea, Glauconomidae), from Shandong, China.

Genes (Basel)

December 2024

Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

The family Glauconomidae has few species, limited molecular data description, and insufficient research attention. The biodiversity of Glauconomidae within China deserves further exploration. In recent years, the taxonomic status of Glauconomidae has undergone changes, and some studies have found a close relationship between Glauconomidae and the family Cyrenidae based on molecular data, suggesting that Glauconomidae should be classified under the superfamily Cyrenoidea.

View Article and Find Full Text PDF

There has been an increase in foodborne vibriosis outbreaks globally, with Vibrio parahaemolyticus emerging as a foodborne issue in temperate commercial shellfish growing regions, including southern Australia. The food safety concerns associated with these microorganisms have led to the need for specific guidance on potential risk management strategies for their control. This is the first Australian multi-seasonal survey of V.

View Article and Find Full Text PDF

Ascorbic acid transporter MmSLC23A2 functions to inhibit apoptosis via ROS scavenging in hard clam (Mercenaria mercenaria) under acute hypo-salinity stress.

Int J Biol Macromol

January 2025

Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Solute carrier family 23 (SLC23) mediates cellular uptake of ascorbic acid, a crucial antioxidant protecting organisms against oxidative stress. Despite advances in understanding SLC23 in mammals, its physiological roles in bivalves remain poorly understood. Notably, euryhaline bivalves exhibit a significant expansion and positive selection of SLC23, highlighting the need for deeper investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!