Neuroinflammation plays a crucial role in the development of epilepsy, and suppressing neuroinflammation can delay epileptogenesis. Recent reports have demonstrated that (+)-borneol has neuroprotective effects in several brain disorders by reducing neuroinflammation. However, its effects on epilepsy have not been reported. In this research, we first studied the effect of different doses of (+)-borneol (3, 6, and 12 mg/kg) on neuroinflammation in a pilocarpine model of epileptogenesis by detecting IL-1β, TNF-α, and COX-2 expression. We demonstrated that different doses of (+)-borneol decreased IL-1β, TNF-α, and COX-2 levels, with 12 mg/kg having the most substantial effect. Furthermore, we examined the effects of 12 mg/kg (+)-borneol on neuronal damage, glial cell activation, and apoptosis in the hippocampus at different time points (1, 3, and 7 days) after SE. We found that (+)-borneol significantly ameliorated neuronal injury, decreased glial cell activation, and attenuated apoptosis. We also found that (+)-borneol inhibited the NF-κB pathway activation induced by SE. In conclusion, our results indicated that (+)-borneol reduces neuroinflammation by inhibiting the NF-κB pathway activation, exerts neuroprotective effects, and may have an inhibitory effect in epileptogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2023.148382DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
12
nf-κb pathway
12
+-borneol
8
exerts neuroprotective
8
doses +-borneol
8
il-1β tnf-α
8
tnf-α cox-2
8
glial cell
8
cell activation
8
pathway activation
8

Similar Publications

Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells.

Biomater Adv

December 2024

Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:

This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.

View Article and Find Full Text PDF

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases.

Cell Commun Signal

January 2025

Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.

Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals.

View Article and Find Full Text PDF

Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!