B-Cell epitopes (BCEs) can identify and bind with receptor proteins (antigens) to initiate an immune response against pathogens. Understanding antigen-antibody binding interactions has many applications in biotechnology and biomedicine, including designing antibodies, therapeutics, and vaccines. Lab-based experimental identification of these proteins is time-consuming and challenging. Computational techniques have been proposed to discover BCEs, but most lack of significant accomplishments. This work uses classical and deep learning models (DLMs) with sequence-based features to predict immunity stimulator BCEs from proteomics sequences. The proposed convolutional neural network-based model outperforms other models with an accuracy (ACC) of 0.878, an F-measure of 0.871, and an area under the receiver operating characteristic curve (AUC) of 0.945. The proposed strategy achieves 58.7% better results on average than other state-of-the-art approaches based on the Mathews Correlation Coefficient (MCC) results. The established model is accessible through a web application located at http://deeplbcepred.pythonanywhere.com.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2023.107874DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning models
8
b-cell epitopes
8
deepbce evaluation
4
evaluation deep
4
models identification
4
identification immunogenic
4
immunogenic b-cell
4
epitopes b-cell
4
epitopes bces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!