Insight into the binding model of per- and polyfluoroalkyl substances to proteins and membranes.

Environ Int

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China. Electronic address:

Published: May 2023

Legacy per- and polyfluoroalkyl substances (PFASs) have elicited much concern because of their ubiquitous distribution in the environment and the potential hazards they pose to wildlife and human health. Although an increasing number of effective PFAS alternatives are available in the market, these alternatives bring new challenges. This paper comprehensively reviews how PFASs bind to transport proteins (e.g., serum albumin, liver fatty acid transport proteins and organic acid transporters), nuclear receptors (e.g., peroxisome proliferator activated receptors, thyroid hormone receptors and reproductive hormone receptors) and membranes (e.g., cell membrane and mitochondrial membrane). Briefly, the hydrophobic fluorinated carbon chains of PFASs occupy the binding cavities of the target proteins, and the acid groups of PFASs form hydrogen bonds with amino acid residues. Various structural features of PFAS alternatives such as chlorine atom substitution, oxygen atom insertion and a branched structure, introduce variations in their chain length and hydrophobicity, which potentially change the affinity of PFAS alternatives for endogenous proteins. The toxic effects and mechanisms of action of legacy PFASs can be demonstrated and compared with their alternatives using binding models. In future studies, in vitro experiments and in silico quantitative structure-activity relationship modeling should be better integrated to allow more reliable toxicity predictions for both legacy and alternative PFASs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2023.107951DOI Listing

Publication Analysis

Top Keywords

pfas alternatives
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
transport proteins
8
hormone receptors
8
pfass
6
proteins
5
alternatives
5
insight binding
4
binding model
4

Similar Publications

Reproductive toxicity of perfluorobutane sulfonate in zebrafish (Danio rerio): Impacts on oxidative stress, hormone disruption and HPGL axis dysregulation.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India. Electronic address:

Per and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals extensively used in consumer products. Perfluorobutane sulfonate (PFBS), a short-chain PFAS, has been introduced as an alternative to long-chain PFAS, but limited studies have investigated its reproductive toxicity in fish. In this study, adult zebrafish were exposed to PFBS at concentrations of 0.

View Article and Find Full Text PDF

Despite widespread research on PFAS, less is known in developing countries like India. PFAS levels in sediment core samples from the Cooum River of Chennai City (India) in 2014 and 2016 were estimated to evaluate the effect of the major flood event in 2015. Among 22 target PFAS in this study, 11 and 12 of them were detected in the 2014 and 2016 samples, respectively.

View Article and Find Full Text PDF

Occurrence and distribution of brominated and fluorinated persistent organic pollutants in surface sediments focusing on industrially affected rivers.

Chemosphere

January 2025

Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Article Synopsis
  • The study focused on legacy persistent organic pollutants like PBDEs, HBCDs, and PFAS found in sediments from five major rivers, revealing higher contamination levels in areas with industrial activity.
  • The predominant compounds detected were decaBDE for PBDEs, γ-HBCD for HBCDs, and PFOS for PFAS, with alternative substances appearing less frequently.
  • Overall, while most ecological risk assessment values were low, PBDEs and PFOS posed significant risks at certain sites, indicating a need for ongoing monitoring to protect aquatic ecosystems.
View Article and Find Full Text PDF

Perfluorooctanoic acid and its alternatives disrupt the osteogenesis and osteoclastogenesis balance: Evidence from the effects on cell differentiation process.

Sci Total Environ

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:

In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.

View Article and Find Full Text PDF

Electrochemical destruction of PFAS at low oxidation potential enabled by CeO electrodes utilizing adsorption and activation strategies.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:

The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!