Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175728 | PMC |
http://dx.doi.org/10.1073/pnas.2222081120 | DOI Listing |
J Proteome Res
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Proteo-SAFARI is a shiny application for fragment assignment by relative isotopes, an R-based software application designed for identification of protein fragment ions directly in the / domain. This program provides an open-source, user-friendly application for identification of fragment ions from a candidate protein sequence with support for custom covalent modifications and various visualizations of identified fragments. Additionally, Proteo-SAFARI includes a nonnegative least-squares fitting approach to determine the contributions of various hydrogen shifted fragment ions ( + 1, + 1, - 1, - 2) observed in UVPD mass spectra which exhibit overlapping isotopic distributions.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Intact protein analysis using mass spectrometry (MS) is an important technique to characterize and provide a comprehensive overview of protein complexity. It is also the basis of "top-down" approaches in proteomics to describe the proteoforms of single protein's post-translational modifications (PTMs). MS-based analysis of intact proteins benefits from high-resolution separations prior to electrospray ionization.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Proteomics, Lipidomics and Metabolomics Core Facility, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
Introduction: The identification of effective, selective biomarkers and therapeutics is dependent on truly deep, comprehensive analysis of proteomes at the proteoform level.
Methods: Bovine serum albumin (BSA) isolated by two different protocols, cold ethanol fractionation and heat shock fractionation, was resolved and identified using Integrative Top-down Proteomics, the tight coupling of two-dimensional gel electrophoresis (2DE) with liquid chromatography and tandem mass spectrometry (LC-MS/MS).
Results And Discussion: Numerous proteoforms were identified in both "purified" samples, across a broad range of isoelectric points and molecular weights.
S-glutathionylation (SSG) is increasingly recognized as a critical signaling mechanism in the heart, yet SSG modifications in cardiac sarcomeric proteins remain understudied. Here we identified SSG of the ventricular isoform of myosin light chain 1 (MLC-1v) in human, swine, and mouse cardiac tissues using top-down mass spectrometry (MS)-based proteomics. Our results enabled the accurate identification, quantification, and site-specific localization of SSG in MLC-1v across different species.
View Article and Find Full Text PDFAnal Chem
December 2024
Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
Quantification of intact proteins in serum by liquid chromatography high-resolution mass spectrometry (HRMS) may be a useful alternative to bottom-up LC-MS or conventional ligand binding assays, due to reduced assay complexity and by providing additional information, such as isoform differentiation or detection of post-translational modifications. The 47.2 kDa lung cancer tumor marker neuron-specific enolase γ (NSEγ) was quantified in a clinically relevant concentration range of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!