Intermediate-range order governs dynamics in dense colloidal liquids.

Proc Natl Acad Sci U S A

International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.

Published: May 2023

The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is surprisingly rich and plays a critical role in numerous physical, biological, and industrial processes. However, approaches to uncover this structure are either system-specific or yield results that are not physically intuitive. Here, through single-particle resolved three-dimensional confocal microscope imaging and the use of a recently introduced four-point correlation function, we show that bidisperse colloidal liquids have a highly nontrivial structure comprising alternating layers with icosahedral and dodecahedral order, which extends well beyond nearest-neighbor distances and grows with supercooling. By quantifying the dynamics of the system on the particle level, we establish that it is this intermediate-range order, and not the short-range order, which has a one-to-one correlation with dynamical heterogeneities, a property directly related to the relaxation dynamics of glassy liquids. Our experimental findings provide a direct and much sought-after link between the structure and dynamics of liquids and pave the way for probing the consequences of this intermediate-range order in other liquid state processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175804PMC
http://dx.doi.org/10.1073/pnas.2300923120DOI Listing

Publication Analysis

Top Keywords

intermediate-range order
12
colloidal liquids
8
nontrivial structure
8
nearest-neighbor distances
8
liquids
6
order governs
4
dynamics
4
governs dynamics
4
dynamics dense
4
dense colloidal
4

Similar Publications

To tackle disorder in crystals and short- and intermediate-range order in amorphous materials, such as glass, we developed a carry-in diffractometer to utilise X-ray fluorescence holography (XFH) and anomalous X-ray scattering (AXS), facilitating element-specific analyses with atomic resolution using the wavelength tunability of a synchrotron X-ray source. Our diffractometer unifies XFH and AXS configurations to determine the crystal orientation via diffractometry. In particular, XFH was realised even for a crystal with blurred emission lines by a standing wave in a hologram, and high-throughput AXS with sufficient count statistics and energy resolution was achieved using three multi-array detectors with crystal analysers.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the short-range and intermediate-range order in GeO2 glass using molecular dynamics and machine-learning interatomic potential alongside reverse Monte Carlo fitting of neutron diffraction data.
  • The analysis includes various methods such as structure factors, coordination number, and persistent homology to compare the models' structural differences.
  • Findings indicate that while both approaches provide similar two-body correlations, they differ significantly in structural ordering, particularly in ring size distributions, with RMC showing broader distributions compared to the narrower distributions from neural network potential molecular dynamics.
View Article and Find Full Text PDF

Forensic pathologists recognize the importance of estimating the range of fire for gunshot entrance wounds. Classically described ranges of fire include contact, close range, medium (or intermediate) range, and indeterminate (or distant) range. The presence or absence of gunshot residue (smoke/soot and/or gunpowder) and the characteristics of the gunshot residue are evaluated in order to estimate the range of fire.

View Article and Find Full Text PDF

Amber is a unique example of a fragile glass that has been extensively aged below its glass transition temperature, thus reaching a state that is not accessible under normal experimental conditions. We studied the medium-range order of Baltic amber by x-ray diffraction (XRD) at high pressures. The pressure dependences of the low-angle XRD intensity between 0 and 5 Å^{-1} were measured from 0 to 7.

View Article and Find Full Text PDF

Binary AsSe alloys from the border of a glass-forming region (65 < < 70) subjected to nanomilling in dry and dry-wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum-chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide AsSe stoichiometry, realized in glassy g-AsSe, glassy-crystalline g/c-AsSe and glassy-crystalline g/c-AsSe. From the XRPD results, the number of rhombohedral As and cubic arsenolite AsO phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!