AI Article Synopsis

  • The magnetic properties of a single crystal (FeMn)MoO were analyzed, revealing an antiferromagnetic state for lower Mn content (≤ 0.25) and a ferrimagnetic phase for higher Mn content (≥ 0.3).
  • All samples displayed significant electric polarization related to spin, regardless of their magnetic state.
  • The ferrimagnetic samples showed distinct square-like magnetic hysteresis loops, with changes in remnant magnetization and coercive field linked to variations in Mn content and temperature.

Article Abstract

In the present work, the magnetic properties of a single crystal (FeMn)MoO (0 ≤ ≤ 1) have been studied by performing extensive measurements. A detailed magnetic phase diagram is built up, in which the antiferromagnetic state dominates for ≤ 0.25 and the ferrimagnetic phase arises for ≥ 0.3. Meanwhile, a sizeable electric polarization of spin origin is commonly observed in all samples, no matter what the magnetic state is. For the samples hosting a ferrimagnetic state, square-like magnetic hysteresis loops are revealed, while the remnant magnetization and coercive field can be tuned drastically by simply varying the Mn content or temperature. A possible coexistence of the antiferromagnetic and ferrimagnetic phases is proposed to be responsible for the remarkable modulation of magnetic properties in the samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c00518DOI Listing

Publication Analysis

Top Keywords

antiferromagnetic ferrimagnetic
8
ferrimagnetic phase
8
femnmoo ≤
8
≤ ≤
8
magnetic properties
8
5
magnetic
5
phase
4
phase transition
4
transition phase
4

Similar Publications

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Interstitial quasi-atomic electrons (IQEs) in the quantized energy levels of positively charged cavities possess a substantial own magnetic moment and control the magnetism of crystalline electrides depending on the interaction with surrounding cations. However, weak spin-orbit coupling and gentle exchange interaction restricted by the IQEs preclude a large magnetic anisotropic, remaining a challenge for a hard magnetism. It is reported that 2D [ReC]·2e electrides (Re = Er, Ho, Dy, and Tb) show the permanent magnetism in a ferrimagnetic ground state, mimicking the ferrites composed of magnetic sublattices with different spin polarizations.

View Article and Find Full Text PDF

Moiré magnetism and moiré excitons in twisted CrSBr bilayers.

Proc Natl Acad Sci U S A

January 2025

Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268.

Moiré excitons and moiré magnetism are essential to semiconducting van der Waals magnets. In this work, we perform a comprehensive first-principles study to elucidate the interplay of electronic excitation and magnetism in twisted magnetic CrSBr bilayers. We predict a twist-induced quantum phase transition for interlayer magnetic coupling and estimate the critical twist angle below which moiré magnetism with mixed ferromagnetic and antiferromagnetic domains could emerge.

View Article and Find Full Text PDF

Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.

View Article and Find Full Text PDF

Frustrated Magnetism and Spin Anisotropy in a Buckled Square Net YbTaO.

Inorg Chem

December 2024

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.

View Article and Find Full Text PDF

Resonant Quantum Magnetodielectric Effect in Multiferroic Metal-Organic Framework [CHNH]Co(HCOO).

Small

December 2024

Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.

The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!