A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tribology of Pore-Textured Hard Surfaces under Physiological Conditions: Effects of Texture Scales. | LitMetric

Micro- and nanotexturing on hard biomaterials have shown advantages for tissue engineering and antifouling applications. However, a growing number of studies have also shown that texturing may cause an increase in friction, demanding further research on the tribological effects of texturing under physiological conditions. This study investigates the tribological effects of micro- and nanopore patterns on hard hydrophilic silicon sliding against soft hydrophobic polydimethylsiloxane (PDMS) immersed in aqueous liquids with various viscosities, simulating the sliding of a textured implant surface against soft tissues. The experimental results show that silicon surfaces with pore textures at both micro- and nanoscale feature sizes confer a higher coefficient of friction (COF) than an untextured one. It is attributed to the texture's edge effect caused by the periodic pore patterns between the two sliding objects with a large difference in material stiffness. For the same solid area fraction, nanopored surfaces show a higher COF than micropored surfaces because of the significantly higher texture edge length per unit area. For micropored surfaces with a similar length of texture edge length per unit area, the COF increases more significantly with the increase in pore size because of the greater stress at the rims of the larger pores. The COFs of both micro- and nanoscale pores generally decrease from ∼10 to 0.1 with an increase in the surrounding aqueous viscosity, indicating the transition from a boundary lubrication to a mixed lubrication regime while mostly remaining in boundary lubrication. In contrast, the COF of an untextured surface decreases from ∼1 to 0.01, indicating that it mostly remains in the mixed lubrication regime while showing the tendency toward hydrodynamic lubrication. Compared to a hydrophilic hard probe sliding against a textured hydrophobic soft substrate, the hydrophobic soft probe sliding against a textured hydrophilic hard substrate produces a significantly higher COF under similar physiological conditions due to the larger edge effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193583PMC
http://dx.doi.org/10.1021/acs.langmuir.2c03377DOI Listing

Publication Analysis

Top Keywords

physiological conditions
12
sliding textured
12
tribological effects
8
micro- nanoscale
8
cof untextured
8
surfaces higher
8
higher cof
8
micropored surfaces
8
texture edge
8
edge length
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!