Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils.

Annu Rev Immunol

Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; email:

Published: April 2023

Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-immunol-081022-113627DOI Listing

Publication Analysis

Top Keywords

myeloid cells
20
tissue myeloid
16
understanding tissue
8
myeloid cell
8
cell heterogeneity
8
myeloid
7
cells
6
tissue
5
origin heterogeneity
4
heterogeneity tissue
4

Similar Publications

Objective: Non-alcoholic steatohepatitis (NASH) is a progressive liver disease with lipid accumulation, inflammation, and liver fibrosis. Ponatinib, a third-generation tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia, was found to improve metabolic disorders in mice. However, the role of ponatinib in liver inflammation and fibrosis remains to be elucidated.

View Article and Find Full Text PDF

Nuclear receptors regulate hematopoietic stem cells (HSCs) and peripheral immune cells in mice and humans. The nuclear orphan receptor NR2F6 (EAR-2) has been shown to control murine hematopoiesis. Still, detailed analysis of the distinct stem cell, myeloid, and lymphoid progenitors in the bone marrow in a genetic loss of function model remains pending.

View Article and Find Full Text PDF

Targeting immune cellular populations and transcription factors: unraveling the therapeutic potential of JQF for NAFLD.

Front Immunol

January 2025

Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Background: Non-alcoholic fatty liver disease (NAFLD) constitutes the most prevalent chronic liver disease worldwide. Progression to non-alcoholic steatohepatitis (NASH), the immune cell reservoir within the liver undergoes remodeling, exacerbating liver inflammation and potentially leading to liver fibrosis. Jiangtang Qingre Formula (JQF) is an effective prescription for the clinical treatment of NAFLD.

View Article and Find Full Text PDF

Background: Uncontrolled severe eosinophilic chronic rhinosinusitis (eCRS) is associated with elevated levels of Th2 cells and raised immunoglobulin concentrations in nasal polyp tissue. eCRS is characterized by high eosinophilic infiltration and type 2 inflammation. Gαi1/3 proteins participate in allergic inflammation by regulating immune cells.

View Article and Find Full Text PDF

Introduction: CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!