AI Article Synopsis

  • - The study investigates how realistic atmospheric conditions affect mid-IR and long-wave-IR laser-induced avalanche breakdowns, which are important for detecting radioactive material remotely.
  • - Experiments show that increasing turbulence reduces the number of breakdown sites, but simulations confirm the avalanche threshold volume remains mostly steady even with strong turbulence over distances up to 0.6 km.
  • - The presence of aerosols increases background noise but still allows for useful detection of signals, suggesting potential for effective long-range radioactive source detection despite challenging atmospheric conditions.

Article Abstract

The effect of realistic atmospheric conditions on mid-IR (λ = 3.9 µm) and long-wave-IR (λ = 10 µm) laser-induced avalanche breakdown for the remote detection of radioactive material is examined experimentally and with propagation simulations. Our short-range in-lab mid-IR laser experiments show a correlation between increasing turbulence level and a reduced number of breakdown sites associated with a reduction in the portion of the focal volume above the breakdown threshold. Simulations of propagation through turbulence are in excellent agreement with these measurements and provide code validation. We then simulate propagation through realistic atmospheric turbulence over a long range (0.1-1 km) in the long-wave-IR regime (λ = 10 µm). The avalanche threshold focal volume is found to be robust even in the presence of strong turbulence, only dropping by ∼50% over a propagation length of ∼0.6 km. We also experimentally assess the impact of aerosols on avalanche-based detection, finding that, while background counts increase, a useful signal is extractable even at aerosol concentrations 10 times greater than what is typically observed in atmospheric conditions. Our results show promise for the long-range detection of radioactive sources under realistic atmospheric conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.488346DOI Listing

Publication Analysis

Top Keywords

realistic atmospheric
12
atmospheric conditions
12
remote detection
8
detection radioactive
8
focal volume
8
atmospheric
5
atmospheric effects
4
effects laser-driven
4
laser-driven avalanche-based
4
avalanche-based remote
4

Similar Publications

Atmospheric refraction imposes a fundamental limitation on the accuracy and precision of geodetic measurements that utilize electromagnetic waves. For terrestrial observations at optical wavelengths recorded over flat terrain, the vertical temperature gradient controls the bending of the rays thus affecting mostly the vertical angle measurement. The rules of thumb for mitigating these effects (variation ranges and short-term fluctuations) are based on intuition and practitioner experience.

View Article and Find Full Text PDF

Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.

View Article and Find Full Text PDF

This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.

View Article and Find Full Text PDF

Optimizing low-temperature CO oxidation under realistic combustion conditions: The impact of CeO morphology on Au/CeO catalysts.

J Hazard Mater

January 2025

State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China; Suzhou Key Laboratory for Urban Public Safety, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, PR China. Electronic address:

The development of carbon monoxide oxidation catalysts for complex gas environments faces significant challenges in fire scenarios. Only a few representative gases are used as interfering components in simulated real smoke under laboratory conditions, which cannot accurately reflect the performance of catalysts in a real fire. Herein, Au/CeO catalysts with high activity were prepared by adjusting the morphology (rod, cube, polyhedron and irregular particles) and exposed crystal surface ratio of CeO.

View Article and Find Full Text PDF

Separation Time of Aluminothermic Reduction Products for Sustainable Silicon Production.

Open Res Eur

January 2025

Universidad Politecnica de Madrid Departamento de Ingenieria Geologica y Minera, Madrid, Community of Madrid, 28003, Spain.

Background: This work was carried out within the framework of the SisAl Pilot project, which is devoted to the environmentally friendly production of silicon. This new method relies on the aluminothermic reduction of quartz in slag, offering a more sustainable alternative to the traditional reduction of silica with carbon in submerged arc furnaces.

Methods: The process takes place in a rotary kiln producing silicon (Si) and alumina slag (actually, a CaO - Al O slag), which must be separated at the end to extract the silicon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!