In this study, the second-life application of Saccharomyces cerevisiae obtained from brewery wastewater was evaluated in the biosorption of Se(IV) (NaSeO) sorbate in residue generated from a fine chemical industry. Biosorption experiments were carried out with different Se(IV) concentrations (A = 7.5 to 30.0 mg L dissolved in deionized water or industrial effluent) and different biosorbent concentrations (B = 2.0 to 52.5 g L, dry mass). Inactive microbial biomass was evaluated in a wet and dehydrated state. The highest selenium removal efficiency (biosorption efficiency-R = 97.5%) was achieved with the same concentrations of sorbate in deionized water, using 24.0 g L of wet cells. In contrast, the industrial effluent treatment showed lower biosorption efficiency (R = 83.3%) due to a large amount of other salts in the medium, mainly sulphur. Overall, the use of smaller amounts of biosorbent had a biosorption capacity of approximately five times greater than when 24.0 g L in industrial effluent treatment was used. However, as reducing the concentration of the contaminant contained in the wastewater is the primary goal of this study, a more significant amount of biosorbent is recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-023-04549-zDOI Listing

Publication Analysis

Top Keywords

industrial effluent
12
deionized water
8
effluent treatment
8
biosorption
6
evaluation residual
4
residual yeast
4
yeast brewery
4
brewery industry
4
industry inactive
4
inactive biosorption
4

Similar Publications

The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects.

J Environ Manage

January 2025

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.

This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.

View Article and Find Full Text PDF

Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load.

View Article and Find Full Text PDF

Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.

View Article and Find Full Text PDF

The wastewater from various industries contaminated with heavy metals poses significant environmental challenges. Biosorption has emerged as a widely used method for removing heavy metals from industrial wastewater. Pseudomonas atacamensis M7D1 is known to produce polysaccharides, but the potential of its polysaccharides as an adsorbent for heavy metal removal still needs to be explored.

View Article and Find Full Text PDF

The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!