Phenolic compounds are the major contaminants identified from various industrial effluents, which pose an extreme threat to the environment. Therefore, investigating an effective technique to remove these toxic phenolic compounds from the contaminated environment is very essential. In the present investigation, batch tests were performed to assess the biodegradation of phenol using an indigenous Rhodococcus pyridinivorans strain PDB9T NS-1 encapsulated in a calcium alginate bead system. In order to improve the mechanical stability, silica was added to the cell-embedded Ca-alginate beads. The impact of experimental conditions such as contact time, pH, and initial phenol doses was investigated. The biodegradation of phenol was examined over a wide range of phenol, and the results showed that more than 99.6% degradation was achieved at an initial phenol dose of 1000 mg/L in 70 h at 30 °C. Among the various sorption isotherm tested, the Freundlich isotherm was the best fitted to the experimental data. This behavior indicated a multilayer biosorption process and was controlled by heterogeneous surface energy. Based on an intra-particle diffusion model, internal mass transfer or pore diffusion predominated over exterior mass transfer in controlling the entire phenol biosorption process. The biosorption of phenol onto the cell encapsulated in the Ca-alginate bead follows pseudo-first-order kinetics with a superior phenol biosorption capacity of 155 mg/g of Ca-alginate. Further stability study revealed that the bead could be recycled successfully without any substantial decline in phenol degradation efficiency, indicating that the immobilized microbe possesses exceptional operating stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-023-04508-8 | DOI Listing |
BMC Plant Biol
January 2025
Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, SLIIT Malabe Campus, Malabe, 10115, Sri Lanka.
Background: Basella alba L. (Malabar spinach) is a widely consumed leafy vegetable, well known for its nutritional and therapeutic properties. These properties arise from the availability of essential nutrients, phytochemicals, and antioxidant potential, which may vary depending on environmental factors induced by the geographical location.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
Identifying the optimal cultivation regions and evaluating the impact of environmental factors are crucial for selecting the best conditions for the commercial production of important medicinal and industrial plants. This study examined the effects of different cultivation areas-Rayen, Eghlid, Kalat, and Zanjan-on the agro-morphological and phytochemical traits of Glycyrrhiza glabra. The findings revealed that the location where the plants were grown significantly influenced their physical and chemical characteristics.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFMetabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!