The treatment of bacterial infections is becoming increasingly challenging with the emergence of antimicrobial resistance. Thus, the development of antimicrobials with novel mechanisms of action is much needed. Previously, we designed several cationic main-chain imidazolium compounds and identified the polyimidazolium PIM1 as a potent antibacterial against a wide panel of multidrug-resistant nosocomial pathogens, and it had relatively low toxicity against mammalian epithelial cells. However, little is known about the mechanism of action of PIM1. Using an oligomeric version of PIM1 with precisely six repeating units (OIM1-6) to control for consistency, we showed that OIM1-6 relies on an intact membrane potential for entry into the bacterial cytoplasm, as resistant mutants to OIM1-6 have mutations in their electron transport chains. These mutants demonstrate reduced uptake of the compound, which can be circumvented through the addition of a sub-MIC dose of colistin. Once taken up intracellularly, OIM1-6 exerts double-stranded DNA breaks. Its potency and ability to kill represents a promising class of drugs that can be combined with membrane-penetrating drugs to potentiate activity and hedge against the rise of resistant mutants. In summary, we discovered that cationic antimicrobial OIM1-6 exhibits an antimicrobial property that is dissimilar to the conventional cationic antimicrobial compounds. Its killing mechanism does not involve membrane disruption but instead depends on the membrane potential for uptake into bacterial cells so that it can exert its antibacterial effect intracellularly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190574 | PMC |
http://dx.doi.org/10.1128/aac.00355-23 | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Carinal resection and reconstruction are complex surgical procedures often necessitated by tumors or other pathologies involving the tracheobronchial junction. Traditional approaches to these surgeries are highly invasive. The advent of uniportal video-assisted thoracoscopic surgery (VATS) along with the integration of extracorporeal membrane oxygenation (ECMO) offer potential advantages in reducing surgical trauma and improving outcomes.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
Extracellular vesicles (EVs) are membrane-bound vesicles that are shed or secreted from the cell membrane and enveloped by a lipid bilayer. They possess stability, low immunogenicity, and non-cytotoxicity, exhibiting extensive prospects in regenerative medicine (RM). However, natural EVs pose challenges, such as insufficient targeting capabilities, potential biosafety concerns, and limited acquisition pathways.
View Article and Find Full Text PDFBMC Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, Zhangqiu People's Hospital, No.1920 Mingshui Huiquan Road, Zhangqiu Distict, Jinan, 250200, People's Republic of China.
Background: To prospectively determine whether tympanoplasty for tympanic membrane perforation (TMP) in wet ears impacts recovery.
Methods: We prospectively enrolled 32 TMP patients (2021-2023) and divided them into the wet-ear (14 patients) and dry-ear groups (18 patients), according to the presence of middle-ear secretions/edema. All patients underwent high-resolution thin-slice computed tomography, ear endoscopy, and pure tone audiometry.
Mol Cell Biochem
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!