Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193906 | PMC |
http://dx.doi.org/10.1080/22221751.2023.2207688 | DOI Listing |
Poult Sci
December 2024
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China. Electronic address:
Enterocytes are a necessary portal for fecal-oral transmission of viruses, including duck hepatitis A virus (DHAV), that act on the absorption of amino acids (AAs). We note that the rapid death of ducklings caused by DHAV is likely due to its rapid release from enterocytes. However, the underlying mechanism driving the release of DHAV remains poorly understood.
View Article and Find Full Text PDFmBio
December 2024
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
The alphavirus chikungunya virus (CHIKV) is a serious human pathogen that can cause large-scale epidemics characterized by fever and joint pain and often resulting in chronic arthritis. Infection by alphaviruses including CHIKV and the closely related Semliki Forest virus (SFV) can induce the formation of filopodia-like intercellular long extensions (ILEs). ILEs emanate from an infected cell, stably attach to a neighboring cell, and mediate cell-to-cell viral transmission that is resistant to neutralizing antibodies.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Parkinson's disease (PD) is characterized by the deposition of misfolded α-synuclein (α-syn) in the brain. Converging evidence indicates that the intracellular transmission and subsequent templated amplification of α-syn are involved in the onset and progression of PD. However, the molecular mechanisms underlying the cell-to-cell transmission of pathological α-syn remain poorly understood.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.
Introduction: The ongoing emergence of SARS-CoV-2 variants poses significant challenges to existing therapeutics. The spike (S) glycoprotein is central to both viral entry and cell-to-cell transmission via syncytia formation, a process that confers resistance to neutralizing antibodies. The mechanisms underlying this resistance, particularly in relation to spike-mediated fusion, remain poorly understood.
View Article and Find Full Text PDFPathogens
November 2024
Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4 T-cells through close cell-cell contacts. The viral Tax-1 (Tax) protein regulates transcription by transactivating the HTLV-1 promoter in the 5' long terminal repeat of the integrated provirus. Here, we generated a clonal Tax-responsive T-cell line to track HTLV-1 infection at the single-cell level using flow cytometry, bypassing intracellular viral protein staining.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!