Recombination of vibrationally cold N2+ ions with electrons.

J Chem Phys

Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic.

Published: May 2023

Recombination of vibrationally cold N2+ ions with electrons was studied in the temperature range of 140-250 K. A cryogenic stationary afterglow apparatus equipped with cavity ring-down spectrometer and microwave diagnostics was utilized to probe in situ the time evolutions of number densities of particular rotational and vibrational states of N2+ ions and of electrons. The obtained value of the recombination rate coefficient for the recombination of the vibrational ground state of N2+ with electrons is αv=0 = (2.95 ± 0.50) × 10-7(300/T)(0.28±0.07) cm3 s-1, while that for the first vibrationally excited state was inferred as αv=1 = (4 ± 4) × 10-8 cm3 s-1 at 250 K.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0149110DOI Listing

Publication Analysis

Top Keywords

n2+ ions
12
ions electrons
12
recombination vibrationally
8
vibrationally cold
8
cold n2+
8
electrons recombination
8
recombination
4
n2+
4
electrons
4
electrons studied
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

The supramolecular binding exclusively by H-bonds of SeO, MoO and WO ions to form nanojars of the formula [EO⊂{-Cu(μ-OH)(μ-pz)}] (; E = Se, Mo, W; = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO, MoO or WO entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, and .

View Article and Find Full Text PDF

Generating Strong Metal-Support Interaction and Oxygen Vacancies in Cu/MgAlO Catalysts by CO Treatment for Enhanced CO Hydrogenation to Methanol.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.

Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.

View Article and Find Full Text PDF

Comparison of the Efficacy of Endoscopic Continuous Perfusion Combined With Y-Shaped Incision and Microscopic Retroauricular Incision in the Treatment of Attic Cholesteatoma: A Randomized Prospective Study.

Ear Nose Throat J

January 2025

Department of Otolaryngology, Northern Jiangsu People's Hospital, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.

This study aimed to compare the efficacy of continuous perfusion of underwater bone grinding combined with a -shaped incision versus a microscopic posterior ear incision in the treatment of attic cholesteatoma. Clinical trials were prospective studies from the Northern Jiangsu People's Hospital. Adult patients with middle ear cholesteatoma requiring ear surgery agreed to participate between September 2019 and September 2023 (age > 18).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!