Homologous recombination, an evolutionarily conserved DNA double-strand break repair pathway to protect genome stability, has long been exploited for the and assembly of multiple DNA duplex fragments in molecular cloning. Whether such methods can also be applied in the self-assembly of DNA nanostructures remains underexplored. Here, we report an enzymatic approach for the self-assembly of high-order DNA constructs with overlapping segments. In our system, a DNA polymerase with exonuclease activity was introduced to produce ssDNA overhangs for specific sticky end cohesion, and as many as 25 DNA structural units were designed to be hierarchically assembled. Using this approach, we successfully constructed a variety of high-order DNA nanostructures, including tubes and extended oligomers, from homogeneous assembly and custom multimers from heterogeneous assembly. Our strategy expands the construction toolbox of complex DNA nanostructures and highlights the potential to enhance the assembly of duplex fragments in molecular cloning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c01214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!