Brachydin B (BrB) is a unique dimeric flavonoid extracted from (Cham.) LG Lohmann with different biological activities. However, the antitumoral potential of this flavonoid is unclear. In our study, we evaluated the effects of the BrB flavonoid on cell viability (MTT, resazurin, and lactate dehydrogenase assays), proliferation (protein dosage and clonogenic assay), and migration/invasion (3D ECM gel, wound-healing, and transwell assays) of metastatic prostate (DU145) cells cultured both as traditional 2D monolayers and 3D tumor spheroids . The results showed that the BrB flavonoid promotes cytotoxic effects from ≥1.50 μM after 24 h of treatment in DU145 cells in monolayers. In 3D prostate tumor spheroids, BrB also induced cytotoxic effects at higher concentrations after longer treatment (48, 72, and 168 h). Furthermore, BrB treatment is associated with reduced DU145 clonogenicity in 2D cultures, as well as decreased area/volume of 3D tumor spheroids. Finally, BrB (6 μM) reduced cell migration/invasion in 2D monolayers and promoted antimigratory effects in DU145 tumor spheroids (≥30 μM). In conclusion, the antitumoral and antimigratory effects observed in DU145 cells cultured in 2D and 3D models are promising results for future studies with BrB using models and confirm this molecule as a candidate for metastatic prostate cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141769 | PMC |
http://dx.doi.org/10.1093/toxres/tfad019 | DOI Listing |
BMC Res Notes
December 2024
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.
Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.
Oncol Res
December 2024
Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.
Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .
Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.
Asian Pac J Cancer Prev
December 2024
Department of Molecular Biology, EW Villa Medica, Dhaka, Bangladesh.
Objective: This study investigated the potential anticancer properties of Myo-inositol on the DU-145 prostate cancer cell line.
Methods: The DU-145 cells have been treated to different doses of Myo-inositol in order to ascertain the half-maximal inhibitory concentration (IC50) using the trypan blue exclusion assay. The impact of Myo-inositol on proteomic profiles was evaluated using 2D gel electrophoresis and liquid chromatography-mass spectrometry (LC-MS).
Sci Rep
December 2024
Department of Medical Biophysics, University of Toronto, Toronto, Canada.
Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied.
View Article and Find Full Text PDFCell Death Dis
December 2024
Division of Medical Sciences, National Cancer Centre Singapore, 30 Hospital Blvd, 168583, Singapore, Singapore.
Radiotherapy is an integral modality in treating human cancers, but radioresistance remains a clinical challenge due to the involvement of multiple intrinsic cellular and extrinsic tumour microenvironment factors that govern radiosensitivity. To study the intrinsic factors that are associated with cancer radioresistance, we established 4 radioresistant prostate (22Rv1 and DU145) and head and neck cancer (FaDu and HK1) models by irradiating their wild-type parentals to 90 Gy, mimicking the fractionated radiotherapy schema that is often using in the clinic, and performed whole exome and transcriptome sequencing of the radioresistant and wild-type models. Comparative genomic analyses detected the enrichment of mismatch repair mutational signatures (SBS6, 14, 15, 20) across all the cell lines and several non-synonymous single nucleotide variants involved in pro-survival pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!