A systematic assessment of photon-counting CT for bone mineral density and microarchitecture quantifications.

Proc SPIE Int Soc Opt Eng

Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University.

Published: February 2023

Photon-counting CT (PCCT) is an emerging imaging technology with potential improvements in quantification and rendition of micro-structures due to its smaller detector sizes. The aim of this study was to assess the performance of a new PCCT scanner (NAEOTOM Alpha, Siemens) in quantifying clinically relevant bone imaging biomarkers for characterization of common bone diseases. We evaluated the ability of PCCT in quantifying microarchitecture in bones compared to conventional energy-integrating CT. The quantifications were done through virtual imaging trials, using a 50 percentile BMI male virtual patient, with a detailed model of trabecular bone with varied bone densities in the lumbar spine. The virtual patient was imaged using a validated CT simulator (DukeSim) at CTDI of 20 and 40 mGy for three scan modes: ultra-high-resolution PCCT (UHR-PCCT), high-resolution PCCT (HR-PCCT), and a conventional energy-integrating CT (EICT) (FORCE, Siemens). Further, each scan mode was reconstructed with varying parameters to evaluate their effect on quantification. Bone mineral density (BMD), trabecular volume to total bone volume (BV/TV), and radiomics texture features were calculated in each vertebra. The most accurate BMD measurements relative to the ground truth were UHR-PCCT images (error: 3.3% ± 1.5%), compared to HR-PCCT (error: 5.3% ± 2.0%) and EICT (error: 7.1% ± 2.0%). UHR-PCCT images outperformed EICT and HR-PCCT. In BV/TV quantifications, UHR-PCCT (errors of 29.7% ± 11.8%) outperformed HR-PCCT (error: 80.6% ± 31.4%) and EICT (error: 67.3% ± 64.3). UHR-PCCT and HR-PCCT texture features were sensitive to anatomical changes using the sharpest kernel. Conversely, the texture radiomics showed no clear trend to reflect the progression of the disease in EICT. This study demonstrated the potential utility of PCCT technology in improved performance of bone quantifications leading to more accurate characterization of bone diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142096PMC

Publication Analysis

Top Keywords

bone
9
bone mineral
8
mineral density
8
bone diseases
8
conventional energy-integrating
8
virtual patient
8
texture features
8
uhr-pcct images
8
hr-pcct error
8
eict error
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!