In and related species, flagellar brake protein YcgR responds to the elevated intracellular c-di-GMP, decreases the flagellar rotation speed, causes a CCW rotation bias, and regulates bacterial swimming. Boehm et al. suggested that c-di-GMP-activated YcgR directly interacted with the motor protein MotA to curb flagellar motor output. Paul et al. proposed that YcgR disrupted the organization of the FliG C-terminal domain to bias the flagellar rotation. The target proteins are controversial, and the role of motor proteins remains unclear in flagellar rotation speed and direction regulation by YcgR. Here we assayed the motor proteins' affinity via a modified FRET biosensor and accessed the role of those key residue via bead assays. We found that YcgR could interact with both MotA and FliG, and the affinities could be enhanced upon c-di-GMP binding. Furthermore, residue D54 of YcgR-N was needed for FliG binding. The mutation of the FliG binding residue D54 or the MotA binding ones, F117 and E232, restored flagellar rotation speed in wild-type cells and cells lacking chemotaxis response regulator CheY that switched the flagellar rotation direction and decreased the CCW ratio in wild-type cells. We propose that c-di-GMP-activated YcgR regulated the flagellar rotation speed and direction via its interaction with motor proteins MotA and FliG. Our work suggest the role of YcgR-motor proteins interaction in bacterial swimming regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140304 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1159974 | DOI Listing |
PLoS Pathog
January 2025
Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America.
Spirochetes are a widely existing group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi.
View Article and Find Full Text PDFBiomolecules
November 2024
Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan.
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France.
The bacterial flagellar motor (BFM) is a rotary molecular machine that drives critical bacterial processes including motility, chemotaxis, biofilm formation, and infection. For over two decades, the bead assay, which measures the rotation of a microparticle attached to the flagellum of a surface-attached bacterium, has been instrumental in deciphering the motor's biophysical mechanisms. This technique has not only quantified the rotational speed and frequency of directional switching as a function of the viscous load on the flagellum but has also revealed the BFM's capacity for mechanosensitive speed modulation, adapting to environmental conditions.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Engineering Mathematics and Technology & Bristol Robotics Laboratory, University of Bristol, Bristol, BS8 1UB, UK.
Sperm swimming is essential for reproduction, with movement strategies adapted to specific environments. Sperm navigate by modulating the symmetry of their flagellar beating, but how they swim forward with asymmetrical beats remains unclear. Current methods lack the ability to robustly detect the flagellar symmetry state in free-swimming spermatozoa, despite its importance in understanding sperm motility.
View Article and Find Full Text PDFPhys Rev E
November 2024
Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
The bacterial flagellar motor is both chemo- and mechanosensitive. It is sensitive to the intracellular concentration of the chemotaxis response regulator CheY-P and to external load conditions. The motor's dose-response curve, which represents the probability of the motor rotating clockwise (CW bias) as a function of CheY-P concentration, characterizes its chemical sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!