AI Article Synopsis

  • This study investigates the causal relationship between gut microbiota and low back pain (LBP) using a Mendelian randomization approach, analyzing data from various genome-wide association studies (GWAS).
  • The results identified 20 gut microbial taxa and 2 metabolites linked to LBP, with specific taxa indicating stronger risks for developing LBP even after corrections for multiple comparisons.
  • Analysis indicated no significant heterogeneity or pleiotropy affecting the results, and introducing body mass index (BMI) diminished the association between gut microbes and LBP, suggesting factors like BMI could influence or confound these relationships.

Article Abstract

Background: Previous studies have implicated a vital association between gut microbiota/gut microbial metabolites and low back pain (LBP), but their causal relationship is still unclear. Therefore, we aim to comprehensively investigate their causal relationship and identify the effect of gut microbiota/gut microbial metabolites on risk of LBP using a two-sample Mendelian randomization (MR) study.

Methods: Summary data from genome-wide association studies (GWAS) of gut microbiota (18,340 participants), gut microbial metabolites (2,076 participants) and LBP (FinnGen biobank) were separately obtained. The inverse variance-weighted (IVW) method was used as the main MR analysis. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were conducted to evaluate the horizontal pleiotropy and to eliminate outlier single-nucleotide polymorphisms (SNPs). Cochran's -test was applied for heterogeneity detection. Besides, leave-one-out analysis was conducted to determine whether the causal association signals were driven by any single SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse causation.

Results: We discovered that 20 gut microbial taxa and 2 gut microbial metabolites were causally related to LBP ( < 0.05). Among them, the lower level of family (OR: 0.771, 95% CI: 0.652-0.913, FDR-corrected  = 0.045) and (OR: 0.875, 95% CI: 0.801-0.955, FDR-corrected  = 0.045) retained a strong causal relationship with higher risk of LBP after the Benjamini-Hochberg Corrected test. The Cochrane's test revealed no Heterogeneity ( > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy ( > 0.05). Furthermore, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the 17 gut microbial taxa exposure-outcome effect were significantly attenuated and tended to be null.

Conclusion: Our findings confirm the the potential causal effect of specific gut microbiota and gut microbial metabolites on LBP, which offers new insights into the gut microbiota-mediated mechanism of LBP and provides the theoretical basis for further explorations of targeted prevention strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140346PMC
http://dx.doi.org/10.3389/fmicb.2023.1157451DOI Listing

Publication Analysis

Top Keywords

microbial metabolites
16
mendelian randomization
12
gut microbial
12
gut
8
gut microbiota
8
metabolites low
8
low pain
8
two-sample mendelian
8
gut microbiota/gut
8
microbiota/gut microbial
8

Similar Publications

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

Synergistic regulation of colon microflora and metabolic environment by resistant starch and sodium lactate in hyperlipidemic rats.

Int J Biol Macromol

March 2025

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Type 3 resistant starch (RS3) regulates diet-related metabolic diseases by promoting intestinal short-chain fatty acids (SCFAs) and lactate production, and facilitating microbial lactate-to-butyrate fermentation. However, its precise in vivo mechanism remains unclear. Therefore, we studied the effects of type 3 lotus seed resistant starch (LRS3) and sodium lactate (SL) on colonic microbiota composition, metabolism, and lipid parameters.

View Article and Find Full Text PDF

The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease.

View Article and Find Full Text PDF

Impaired denitrification of aerobic granules in response to micro/nanoplastic stress: Insights from interspecies interactions and electron transfer processes.

Water Res

March 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.

The accumulation of micro/nanoplastics in wastewater significantly hinders denitrification in biological wastewater treatment systems, yet the intrinsic mechanisms are not fully understood. Herein, we combined signal molecule monitoring, electrochemical characterization and multi-omics analysis to investigate how quorum sensing (QS)-mediated microbial interactions influence denitrification in aerobic granular sludge systems. Results showed that after 90-day exposure to micro/nanoplastics, cross-talk between multiple signal molecules significantly declined, thereby disrupting the QS system to opportunely sense changes in the external environment.

View Article and Find Full Text PDF

Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity.

J Immunol

March 2025

INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.

Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!