Health Control of Tree Trunk Utilizing Microwave Imaging and Reverse Problem Algorithms.

ACS Omega

Department of Electronics and Computer Engineering (FKEKK), Center for Telecommunication Research and Innovation (CeTRI), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Malacca 76100, Malaysia.

Published: April 2023

The voids in their trunk significantly affect tropical trees' health. Both the wood and timber industries may face substantial financial losses because of the lack of an effective technique to inspect the defected trees through deep zonal monitoring. Microwave imaging offers the advantages of mobility, processing time, compactness, and resolution over alternative imaging methods. An ultra-wide band (UWB) imaging system consisting of UWB antennas and a reverse problem algorithm is proposed. Several conditions, such as the size of trunk samples (16-30 cm), number of targets, size of voids, heterogeneity of media, and number of layers, are considered in experimental studies. Based on these studies, cylindrical wooden models with 100 and 140 mm diameters, one void at the center, and three voids in different locations were 3D printed. After proving the system's ability through simulation and measurements on 3D models, a rubber-wood trunk with a length of 75 cm was cut into smaller pieces. The images created utilizing the measured data showed that the system could detect voids in the rubber trunk. Furthermore, the system indicated a high percentage of reliability and repeatability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134228PMC
http://dx.doi.org/10.1021/acsomega.2c07015DOI Listing

Publication Analysis

Top Keywords

microwave imaging
8
reverse problem
8
trunk
5
health control
4
control tree
4
tree trunk
4
trunk utilizing
4
utilizing microwave
4
imaging
4
imaging reverse
4

Similar Publications

Ultrasound‑guided Percutaneous Radiofrequency and Microwave Ablation for Cervical Lymph Node Metastasis from Papillary Thyroid Carcinoma: A Systematic Review and Meta‑analysis of Clinical Efficacy and Safety.

Acad Radiol

January 2025

Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China (A.U., L.C., L.Y., W.X.). Electronic address:

Aim: To evaluate the efficacy and safety of radiofrequency ablation (RFA) and microwave ablation (MWA) for treating cervical lymph node metastasis (CLNM) from papillary thyroid carcinoma (PTC).

Methods: Medline, EMBASE, Web of Science, and Cochrane Library were searched for studies on the efficacy and safety of thermal ablations for treating CLNM from PTC until July 2024. Among 544 papers, 11 articles were reviewed involving 233 patients and 432 CLNM cases.

View Article and Find Full Text PDF

Purpose: Contrast-enhanced CT (CECT) may be performed immediately following microwave liver ablation for assessment of ablative margins. However, practices and protocols vary among institutions. Here, we compare a standardized bolus-tracked biphasic CECT protocol and compare this with a single venous phase fixed delay protocol for ablation zone (AZ) assessment.

View Article and Find Full Text PDF

Wireless microwave-to-optical conversion via programmable metasurface without DC supply.

Nat Commun

January 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.

Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.

View Article and Find Full Text PDF

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

In this paper, a microwave thermal imaging system (MTIS) has been presented for debonding detection of radar absorbing materials (RAMs). First, an overview of the mechanism underlying microwave heating and the fundamental principle of defect detection within RAMs is presented. Then, a multifunctional MTIS capable of performing both microwave lock-in thermography (MLIT) and long-pulse microwave thermography (LPMT) has been introduced, specifically tailored for the in situ inspection of RAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!