The aim of this study was to evaluate the influence of lactic acid bacteria (LAB) strains ( No.122 and No.210) and milling process on the solid-state fermented (for 24 h, at 30°C) green and red lentils ( L.) properties, chiefly pH, LAB viable counts, color coordinates, free amino acid (FAA) profile, γ-aminobutyric acid (GABA) and biogenic amine (BA) concentrations, fatty acid (FA) and volatile compound (VC) profiles. Results showed that both of the tested LAB strains are suitable for the fermentation of lentils: pH of fermented lentils was <4.5 and LAB viable counts >8.0 log colony-forming units (CFU)/g. A very strong negative correlation was found ( = -0.973,  ≤ 0.0001) between LAB counts and pH of the samples. Also, fermentation and milling process were significant factors toward color coordinates of the lentils. In most of the cases, solid-state fermentation (SSF) increased essential FAA content in lentils; however, some of the non-essential FAA content was reduced. SSF significantly increased GABA concentration in lentils and milling process was a significant factor on GABA content of the samples ( ≤ 0.05). The main BA in lentils was spermidine, and SSF decreased their total BA content (34.8% on average in red lentils and 39.9% on average in green lentils). The main FA in lentils were linoleic and oleic. The main VC in lentils were hexanal, 1-hexanol, hexanoic acid, D-limonene and (E)-2-nonen-1-ol. Furthermore, most of the VC showed significant correlations with pH of lentil samples, LAB counts and FA content. Finally, the LAB strain used for fermentation and the milling process of lentils are significant factors for most of the analyzed parameters in lentil. Moreover, despite the higher GABA concentration found in green non-milled SSF lentils, application of combined milling and SSF is recommended because they showed the lowest BA content in addition to higher essential FAA and GABA concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133501PMC
http://dx.doi.org/10.3389/fnut.2023.1118710DOI Listing

Publication Analysis

Top Keywords

milling process
20
lentils
14
red lentils
12
main lentils
12
influence lactic
8
lactic acid
8
acid bacteria
8
process solid-state
8
solid-state fermented
8
green red
8

Similar Publications

To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.

View Article and Find Full Text PDF

Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.

View Article and Find Full Text PDF

This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

Synthesis of Nanocrystal-Embedded Bulk Metallic Glass Composites by a Combination of Mechanical Alloying and Vacuum Hot Pressing.

Materials (Basel)

January 2025

Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan.

Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!