Unlabelled: Polyethylene terephthalate (PET) is the most abundantly produced plastic due to its excellent performance, but is also the primary source of poorly degradable plastic pollution. The development of environment-friendly PET biodegradation is attracting increasing interest. The leaf-branch compost cutinase mutant ICCG (F243I/D238C/S283C/Y127G) exhibits the best hydrolytic activity and thermostability of all known PET hydrolases. However, its superior PET degradation is highly dependent on its preparation as a purified enzyme, which critically reduces its industrial utility. Herein, we report the use of rational design and combinatorial mutagenesis to develop a novel ICCG mutant RITK (D53R/R143I/D193T/E208K) that demonstrated excellent whole-cell biocatalytic activity. Whole cells expressing RITK showed an 8.33-fold increase in biocatalytic activity compared to those expressing ICCG. Thermostability was also improved. After reacting at 85 °C for 3 h, purified RITK exhibited a 12.75-fold increase in depolymerization compared to ICCG. These results will greatly enhance the industrial utility of PET hydrolytic enzymes and further the progress of PET recycling.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03557-4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130265 | PMC |
http://dx.doi.org/10.1007/s13205-023-03557-4 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Physics and Astronomy, University of Wroclaw, 9 Maxa Born Square, 50-204 Wroclaw, Poland.
This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Doctoral School, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania.
This paper presents the results of research on the technical-economic optimization of FDM parameters (L-layer height and I-infill density percentage) for the manufacture of tensile and compression samples from recycled materials (r) of PETG (polyethylene terephthalate glycol) and ASA (acrylonitrile styrene acrylate) in the context of the transition to a circular economy. To carry out our technical-economic study, the fundamental principle of value analysis was used, which consists of maximizing the ratio between and , where represents the mechanical characteristic (tensile strength or compressive strength) and represents the production cost. The results of this study showed that, in the case of tensile samples manufactured by recycled PETG (rPETG), the parameter that significantly influences the results of the ratios is L (the height of the layer), while for the samples manufactured additively from recycled ASA (rASA), the parameter that decisively influences the tensile strength is I (the infill density percentage).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania.
With the growing interest in nanofibers and the urgent need to address environmental concerns associated with plastic waste, there is an increasing focus on using recycled materials to develop advanced healthcare solutions. This study explores the potential of recycled poly(ethylene terephthalate) (PET) nanofibers, functionalized with copper-enhanced alginate, for applications in wound dressings. Nanofibers with desirable antimicrobial properties were developed using chemical recycling and electrospinning techniques, offering a sustainable and effective option for managing wound infections and promoting healing.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Pharmacy, Vasile Goldis Western University of Arad, 310130 Arad, Romania.
Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!