Background And Objectives: Endophytic fungi are believed to possess compounds as antibacterial agents. This study was designed to determine antibacterial activity of the crude extracts from IBRL OS-64 against pathogenic bacteria.
Materials And Methods: The qualitative and quantitative screenings were performed using agar plug and disk diffusion antimicrobial tests, respectively. Besides that, the MIC and MBC value of the extracts were determined using broth microdilution assay and morphological changes of the bacterial cells exposed to the extract were observed under Scanning Electron Microscope (SEM).
Results: Agar plug diffusion assay revealed that ATCC 17802 and were the most sensitive to the extract with the size of inhibition zones of 11 to ≤ 20 mm. The MIC and MBC values of the extract varied depending on the test bacteria. Observation through SEM revealed that the bacterial cells exposed to the extract experienced severe damage such as irregular shape with crumpled and shrunken cells which led to cell death.
Conclusion: The data suggest that the crude extracts of IBRL OS-64 exert antibacterial activity against test bacteria and principally affect the cell wall in growing pathogenic bacterial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132345 | PMC |
http://dx.doi.org/10.18502/ijm.v14i3.9780 | DOI Listing |
BMC Complement Med Ther
December 2024
Oncology Department, Guang'anmen Hospital, China, Academy of Chinese Medical Sciences, Beixian Pavilion, No.5, Xicheng District, Beijing, China.
Background: The treatment of advanced colorectal cancer (CRC) has progressed slowly, with chemotherapy combined with targeted therapy being the first-line treatment for the disease, but the improvement in efficacy is not satisfactory. Compound Kushen injection (CKI) is one of the representative drugs of anti-cancer Chinese herbal injection drugs, which has been widely used in the adjunct treatment of cancer in China. The aim of this trial is to evaluate the efficacy and safety of CKI combined with first-line treatment of advanced CRC.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Center of Excellence on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Henri Dunant Rd, Bangkok, 10330, Thailand.
Background: Microorganisms in dental unit water (DUW) play a significant role in dental bioaerosols. If the methods used to decontaminate DUW also help improve air quality in dental clinics is worth exploring. In this study, we aim to identify the source of bacteria in dental bioaerosols and investigate the impact of waterline disinfectants on the quantity and composition of bacteria in DUW and bioaerosols.
View Article and Find Full Text PDFFood Environ Virol
December 2024
Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e.
View Article and Find Full Text PDFCommun Biol
December 2024
Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications.
View Article and Find Full Text PDFDye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!