Differential Contributions of Distinct Free Radical Peroxidation Mechanisms to the Induction of Ferroptosis.

JACS Au

Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States.

Published: April 2023

Ferroptosis is a form of regulated cell death driven by lipid peroxidation of polyunsaturated fatty acids (PUFAs). Lipid peroxidation can propagate through either the hydrogen-atom transfer (HAT) or peroxyl radical addition (PRA) mechanism. However, the contribution of the PRA mechanism to the induction of ferroptosis has not been studied. In this study, we aim to elucidate the relationship between the reactivity and mechanisms of lipid peroxidation and ferroptosis induction. We found that while some peroxidation-reactive lipids, such as 7-dehydrocholesterol, vitamins D and A, and coenzyme Q10, suppress ferroptosis, both nonconjugated and conjugated PUFAs enhanced cell death induced by RSL3, a ferroptosis inducer. Importantly, we found that conjugated PUFAs, including conjugated linolenic acid (CLA 18:3) and conjugated linoleic acid (CLA 18:2), can induce or potentiate ferroptosis much more potently than nonconjugated PUFAs. We next sought to elucidate the mechanism underlying the different ferroptosis-inducing potency of conjugated and nonconjugated PUFAs. Lipidomics revealed that conjugated and nonconjugated PUFAs are incorporated into distinct cellular lipid species. The different peroxidation mechanisms predict the formation of higher levels of reactive electrophilic aldehydes from conjugated PUFAs than nonconjugated PUFAs, which was confirmed by aldehyde-trapping and mass spectrometry. RNA sequencing revealed that protein processing in the endoplasmic reticulum and proteasome are among the most significantly upregulated pathways in cells treated with CLA 18:3, suggesting increased ER stress and activation of unfolded protein response. These results suggest that protein damage by lipid electrophiles is a key step in ferroptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131203PMC
http://dx.doi.org/10.1021/jacsau.2c00681DOI Listing

Publication Analysis

Top Keywords

nonconjugated pufas
16
lipid peroxidation
12
conjugated pufas
12
peroxidation mechanisms
8
ferroptosis
8
induction ferroptosis
8
cell death
8
pufas
8
pra mechanism
8
acid cla
8

Similar Publications

Ferroptosis is a form of regulated cell death driven by lipid peroxidation of polyunsaturated fatty acids (PUFAs). Lipid peroxidation can propagate through either the hydrogen-atom transfer (HAT) or peroxyl radical addition (PRA) mechanism. However, the contribution of the PRA mechanism to the induction of ferroptosis has not been studied.

View Article and Find Full Text PDF

The acceleration of yellow lupine flower abscission by jasmonates is accompanied by lipid-related events in abscission zone cells.

Plant Sci

March 2022

Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland. Electronic address:

Yellow lupine is an economically important crop. This species has been used as a great model for abscission processes for several years due to extreme flower abortion, which takes place in the abscission zone (AZ). AZ activation involves modifications of cell walls, membranes, and cellular structure.

View Article and Find Full Text PDF

Anti-Inflammatory and Tissue Adhesion Properties of an α-Linolenic Acid-Modified Gelatin-Based In Situ Hydrogel.

ACS Appl Bio Mater

September 2020

Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.

Poly unsaturated fatty acids (PUFAs)-natural chemicals derived from fish and nuts-have anti-inflammatory and antioxidative properties that are attributed to the inhibition of inflammatory pathways and the radical scavenging activity of their double bonds. In this study, Alaska pollock-derived gelatin (ApGltn), which has a low sol-gel transition temperature, was modified with α-linolenic acid (ALA) to obtain ALA-ApGltn, which was subsequently cross-linked to give a hydrogel (ALA-gel). Although the elastic modulus of ALA-gel and nonmodified ApGltn gel (Org-gel) was almost the same, ALA-gel exhibited a higher tan δ as well as a lower swelling ratio and enzymatic degradation rate than Org-gel.

View Article and Find Full Text PDF

A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated.

View Article and Find Full Text PDF

Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!