Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Guiding metal organic framework (MOF) morphology, especially without the need for chemical additives, still remains a challenge. For the first time, we report a unique surface guiding approach in controlling the crystal morphology formation of zeolitic imidazole framework-8 (ZIF-8) and HKUST-1 MOFs on disrupted alkanethiol self-assembled monolayer (SAM)-covered Au substrates. Selective molecule removal is applied to generate diverse SAM matrices rich in artificial molecular defects in a monolayer to direct the dynamic crystal growth process. When a 11-mercaptoundecanol alkanethiol monolayer is ruptured, the hydroxyl tail groups of surface residue molecules act as nucleating sites by coordination with precursor metal ions. Meanwhile, the exposed alkane chain backbones stabilize a particular facet of MOF nuclei in the dynamic growth by slowing down their crystal growth rates along a specific direction. The competitive formation between the [110] and [100] planes of ZIF-8 ultimately regulates the crystal shapes from rhombic dodecahedron, truncated rhombic dodecahedron, and truncated cube to cube. Similarly, changeable morphologies of HKUST-1 crystals are also achieved from cube and tetrakaidekahedron to octahedron, originating from the competitive selection between the [100] and [111] planes. In addition to the artificial matrix preferred orientation of initial nucleation, parameters such as temperature also play a crucial role in the resulting crystal morphology. Standing on the additive-free MOF crystal morphology growth control, porous architectures prepared in this approach can act as templates for ligand-free metal (Au, Ag, and Cu) nanocluster synthesis. The nanocluster-embedded MOF structures represent distinct crystal morphology-dependent optical properties, and interestingly, their fluorescence emission can be highly enhanced by facet-induced nanocluster packing alignments. These findings not only provide a unique thought on MOF crystal morphology guidance but also pave a new route for the accompanied property investigation and further application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131197 | PMC |
http://dx.doi.org/10.1021/jacsau.2c00692 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!