A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GAN-based patient information hiding for an ECG authentication system. | LitMetric

Various biometrics such as the face, irises, and fingerprints, which can be obtained in a relatively simple way in modern society, are used in personal authentication systems to identify individuals. These biometric data are extracted from an individual's physiological data and yield high performance in identifying an individual using unique data patterns. Biometric identification is also used in portable devices such as mobile devices because it is more secure than cryptographic token-based authentication methods. However, physiological data could include personal health information such as arrhythmia related patterns in electrocardiogram (ECG) signals. To protect sensitive health information from hackers, the biomarkers of certain diseases or disorders that exist in ECG signals need to be hidden. Additionally, to implement the inference models for both arrhythmia detection and personal authentication in a mobile device, a lightweight model such as a multi-task deep learning model should be considered. This study demonstrates a multi-task neural network model that simultaneously identifies an individual's ECG and arrhythmia patterns using a small network. Finally, the computational efficiency and model size of the single-task and multi-task models were compared based on the number of parameters. Although the multi-task model has 20,000 fewer parameters than the single-task model, they yielded similar performance, which demonstrates the efficient structure of the multi-task model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130315PMC
http://dx.doi.org/10.1007/s13534-023-00266-yDOI Listing

Publication Analysis

Top Keywords

personal authentication
8
physiological data
8
arrhythmia patterns
8
ecg signals
8
multi-task model
8
model
7
multi-task
5
gan-based patient
4
patient hiding
4
ecg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!