Arctic charr () is a niche-market high-value species for Nordic aquaculture. Similar to other salmonids, both anadromous and landlocked populations are encountered. Whole-genome re-sequencing (22X coverage) was performed on two farmed populations of anadromous (Sigerfjord; = 24) and landlocked (Arctic Superior; = 24) origin from Norway and Sweden respectively. More than 5 million SNPs were used to study their genetic diversity and to scan for selection signatures. The two populations were clearly distinguished through principal component analysis, with the mean fixation index being ~0.12. Furthermore, the levels of genomic inbreeding estimated from runs of homozygosity were 6.23% and 8.66% for the Norwegian and the Swedish population respectively. Biological processes that could be linked to selection pressure associated primarily with the anadromous background and/or secondarily with domestication were suggested. Overall, our study provided insights regarding the genetic composition of two main strains of farmed Arctic charr from Scandinavia. At the same time, ample genomic resources were produced in the magnitude of millions of SNPs that could assist the transition of Nordic Arctic charr farming in the genomics era.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130564 | PMC |
http://dx.doi.org/10.1111/eva.13537 | DOI Listing |
J Fish Biol
January 2025
School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
The urgency of rapid species monitoring is at an all-time high due to the increasing threat of climate change to global ecosystems, in particular freshwater habitats. Fish such as Arctic charr, Salvelinus alpinus, are particularly vulnerable to increasing water temperatures and changes in land use due to their dependence on cold waters and confinement to lacustrine environments. Nonetheless, current monitoring practices, relying on physical capture of organisms, are hindered by resource constraints, desire to manage habitats for recreational fishing, and restricted access to sites.
View Article and Find Full Text PDFPolar Biol
January 2025
Fisheries and Marine Institute, Memorial University of Newfoundland and Labrador, St. John's, NL Canada.
Unlabelled: iKaluk, Inuttitut for Arctic charr (), holds significant commercial and cultural value for Inuit communities throughout Nunatsiavut. Studies evaluating iKaluk habitat associations in freshwater are plentiful; however, there is limited information on the ecological makeup and sediment characteristics of anadromous charr habitats in marine environments. This study investigated the benthic associations of Arctic charr during their marine residency period in Nain, Nunatsiavut, using underwater videos, harvester-identified fishing locations, and acoustic telemetry.
View Article and Find Full Text PDFEvol Dev
March 2025
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Univ. Savoie Mont Blanc, CNRS, EDYTEM, Chambéry, France.
In the context of strong historical and climate anthropological pressure, we studied the impact of paternal transmission of PCBs on offspring of the stenothermic salmonid, Artic charr. Indeed, the transgenerational effects of maternal transmission are widely studied, unlike the paternal effect, which is often limited to epigenetic impacts. The study aims to test the effects of temperature and PCBs on the Artic charr (Salvelinus alpinus), whose population within the perialpine lakes has remained low for about a decade.
View Article and Find Full Text PDFJ Fish Biol
September 2024
Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland.
Assessing cognitive traits poses consistent methodological challenges. We describe a method for testing Arctic charr by incorporating a T-maze into their housing, which reduced stress and improved the engagement of the tested fish in the task. We outline the phases of testing to evaluate learning efficiency and determine which orientation strategies, such as motor response versus beaconing, are prioritized by the animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!