Malaria control uses insecticides to kill mosquitoes. Recent successes in malaria control are threatened by increasing levels of insecticide resistance (IR), requiring insecticide resistance management (IRM) strategies to mitigate this problem. Field trials of IRM strategies are usually prohibitively expensive with long timeframes, and mathematical modeling is often used to evaluate alternative options. Previous IRM models in the context of malaria control assumed IR to have a simple (monogenic) basis, whereas in natural populations, IR will often be a complex polygenic trait determined by multiple genetic variants. A quantitative genetics model was developed to model IR as a polygenic trait. The model allows insecticides to be deployed as sequences (continuous deployment until a defined withdrawal threshold, termed "insecticide lifespan", as indicated by resistance diagnosis in bioassays), rotations (periodic switching of insecticides), or full-dose mixtures (two insecticides in one formulation). These IRM strategies were compared based on their "strategy lifespan" (capped at 500 generations). Partial rank correlation and generalized linear modeling was used to identify and quantify parameters driving the evolution of resistance. Random forest models were used to identify parameters offering predictive value for decision-making. Deploying single insecticides as sequences or rotations usually made little overall difference to their "strategy lifespan", though rotations displayed lower mean and peak resistances. Deploying two insecticides in a full-dose mixture formulation was found to extend the "strategy lifespan" when compared to deploying each in sequence or rotation. This pattern was observed regardless of the level of cross resistance between the insecticides or the starting level of resistance. Statistical analysis highlighted the importance of insecticide coverage, cross resistance, heritability, and fitness costs for selecting an appropriate IRM strategy. Full-dose mixtures appear the most promising of the strategies evaluated, with the longest "strategy lifespans". These conclusions broadly corroborate previous results from monogenic models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130562 | PMC |
http://dx.doi.org/10.1111/eva.13546 | DOI Listing |
BMJ Glob Health
January 2025
PMI Evolve Project, PATH, Washington, District of Columbia, USA.
Introduction: National malaria programmes must weigh the relative benefits of different vector control and elimination tools to prioritise resource allocation with the greatest impact. This study assesses the epidemiological and entomological impacts of piperonyl butoxide insecticide-treated nets (PBO ITN-only arm) compared with the combination of two annual non-pyrethroid indoor residual spraying (IRS) campaigns and standard pyrethroid ITNs (IRS+Standard Pyrethroid ITN arm) in the Amhara region of Ethiopia.
Methods: An open-label, stratified block-cluster randomised trial was designed to compare the impacts of the two intervention arms.
PLoS One
January 2025
Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.
Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
Background: Long-lasting insecticidal nets (LLINs) were once fully effective for the prevention of malaria; however, mosquitoes have developed resistance to pyrethroids, the main class of insecticides used on nets. Dual active ingredient LLINs (dual-AI LLINs) have been rolled out as an alternative to pyrethroid (PY)-only LLINs to counteract this. Understanding the minimum community usage at which these LLINs elicit an effect that also benefits non-users against malaria infection is important.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sıtkı Koçman University, Mugla, Türkiye.
The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!