The World Health Organization (WHO) has identified antimicrobial resistance bacteria and its spread as one of the most serious threats to public health and the environment in the twenty-first century. Different treatment scenarios are found in several countries, each with their own regulations and selection criteria for the effluent quality and management practices of hospital wastewater. To prevent the spread of disease outbreaks and other environmental threats, the development of sustainable treatment techniques that remove all antibiotics and antimicrobial resistant bacteria and genes should be required. Although few research based articles published focusing this issues, explaining the drawbacks and effectiveness of post-treatment disinfection strategies for eliminating antibiotic residues and antimicrobial resistance from hospital wastewater is the reason of this review. The application of conventional activated sludge (CAS) in large scale hospital wastewater treatments poses high energy supply needs for aeration, capital and operational costs. Membrane bioreactors (MBR) have also progressively replaced the CAS treatment systems and achieved better treatment potential, but membrane fouling, energy cost for aeration, and membrane permeability loss restrict their performance at large scale operations. In addition, the membrane process alone doesn't completely remove/degrade these micropollutants; as a substitute, the pollutants are being concentrated in a smaller volume, which requires further post-treatment. Therefore, these drawbacks should be solved by developing advanced techniques to be integrated into any of these or other secondary wastewater treatment systems, aiming for the effective removal of these micropollutants. The purpose of this paper is to review the performances of post-treatment disinfection technologies in the removal of antibiotics, antimicrobial resistant bacteria and their gens from hospital wastewater. The performance of advanced disinfection technologies (such as granular and powered activated carbon adsorption, ozonation, UV, disinfections, phytoremediation), and other integrated post-treatment techniques are primarily reviewed. Besides, the ecotoxicology and public health risks of hospital wastewater, and the development, spreading and mechanisms of antimicrobial resistant and the protection of one health are also highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130869PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15360DOI Listing

Publication Analysis

Top Keywords

hospital wastewater
24
post-treatment disinfection
12
disinfection technologies
12
antimicrobial resistance
12
antimicrobial resistant
12
antibiotic residues
8
residues antimicrobial
8
resistance bacteria
8
public health
8
antibiotics antimicrobial
8

Similar Publications

Wastewater Monitoring During the COVID-19 Pandemic in the Veneto Region, Italy: Longitudinal Observational Study.

JMIR Public Health Surveill

January 2025

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Via Loredan 18, Padova, Italy, 39 049 8275384.

Background: As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.

Objective: We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks.

View Article and Find Full Text PDF

Pollinosis is the most prevalent allergic disorder. Assessing the impact of real-world pollen exposure on symptoms remains challenging due to extensive patient-level efforts required. This study explores the potential of wastewater-based epidemiology (WBE) to investigate the relationship between airborne pollen concentrations and antihistamine residues in wastewater as an indicator of pollinosis symptom treatment at the population-scale.

View Article and Find Full Text PDF

The Antimicrobial Resistance - Genomes, Big Data and Emerging Technologies Conference explored key topics including measuring the burden of AMR, global public health pathogen genomics infrastructure and surveillance, translation and implementation of genomics for AMR control, use of techniques such as wastewater surveillance, mathematical and statistical modelling, and Artificial Intelligence (AI) to aid understanding of AMR. This report describes research presented during plenary sessions and discussions, keynote presentations and posters.

View Article and Find Full Text PDF

is an understudied, gram-negative, aerobic bacterium that is widespread in the environment and increasingly a cause of opportunistic infections. Treating remains difficult, leading to an increase in disease severity and higher hospitalization rates in people with cystic fibrosis, cancer, and other immunocompromised health conditions. The lack of effective antibiotics has led to renewed interest in phage therapy; however, there remains a great need for well-characterized phages, especially against .

View Article and Find Full Text PDF

Anaerobic digestion (AD) is gaining increasing attention as the central reservoir of antibiotic resistance genes (ARGs), while the geographical distribution of ARGs in AD is neglected. Accordingly, a sampling scheme on full-scale AD plants across China was implemented, and the resistome therein was excavated. The abundance of ARGs in AD sludge ranged from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!