Atmospheric deterioration of ceramic building materials and future trends in the field: a review.

Heliyon

Grupo de Química Básica, Aplicada y Ambiente (Alquimia), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia.

Published: April 2023

Multiple techniques have been developed and implemented around the world to monitor structures and minimize the costs of repairing, maintaining, and losing ceramic building materials due to environmental factors. Understanding the different degradation phenomena that affect ceramic building materials and evaluating their condition can help reduce material losses caused by deterioration and the need for interventions. This study reviews the main forms of atmospheric degradation that affect ceramic materials and the commonly employed methods to evaluate their deterioration. The aim is to illustrate the different types of atmospheric deterioration that affect ceramic materials and to demonstrate the current monitoring methods and testing. In addition to a literature review, a bibliometric analysis was conducted to highlight the available tools to counter atmospheric deterioration. The analysis shows that CO2, sulfates, and temperature are the most important types of degradation for ceramic construction materials. It was also discovered that due to their porous nature, ceramic construction materials require careful control as contaminants and water can easily penetrate them. The two most severe types of deterioration identified in this analysis for reinforced concrete were chloride-induced corrosion and carbonation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133669PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15028DOI Listing

Publication Analysis

Top Keywords

atmospheric deterioration
12
ceramic building
12
building materials
12
affect ceramic
12
ceramic materials
8
ceramic construction
8
construction materials
8
ceramic
7
materials
7
deterioration
5

Similar Publications

Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.

View Article and Find Full Text PDF

Migratory animals rely on multiple sites during their annual cycles. Deteriorating conditions at any site can have population-level consequences, with long-distance migrants seen as especially susceptible to such changes. Reduced adult survival caused by persecution at non-breeding sites has been suggested a major reason for the catastrophic decline of a formerly abundant, long-distance migratory songbird, the Yellow-breasted Bunting Emberiza aureola.

View Article and Find Full Text PDF

Ageing leads to a gradual deterioration of the organs, with the brain being particularly susceptible, often leading to neurodegeneration. This process includes well-known changes such as tau hyperphosphorylation and beta-amyloid deposition, which are commonly associated with neurodegenerative diseases but are also present in ageing. These structures are triggered by earlier cellular changes such as energy depletion and impaired protein synthesis, both of which are essential for cell function.

View Article and Find Full Text PDF

Hygroscopic materials based on highly hygroscopic salts are promising for atmospheric water harvesting (AWH), but the metal- or halide-containing highly hygroscopic salts often have leakage and corrosion issues. Here, the design and synthesis of metal- and halide-free, highly hygroscopic, and macroporous polymers from [2-(acryloyloxy)ethyl]trimethylammonium chloride simply via in situ foaming, solidification, and ion exchange are reported. The resulting polymers exhibit highly interconnected macroporous structure, robust compression, and leakage-free performance, and they also demonstrate relatively high moisture adsorption capacities (up to 1.

View Article and Find Full Text PDF

Modified atmosphere packaging maintains stem quality of Chinese flowering cabbage by restraining postharvest lignification and ROS accumulation.

Food Chem X

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

In this study, the impact of modified atmosphere packaging (MAP) on quality, lignin biosynthesis, reactive oxygen species (ROS) metabolism, and microstructures of stem in Chinese flowering cabbages was investigated. Compared with control, MAP treatment retained higher content of protein, total soluble solid, and vitamin C, while lower weight loss rate, carbon dioxide (CO) production rate, electrolyte leakage, firmness and hollowing of stems. Lignin content in MAP-treated stems was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!