Fat metabolism is an important modifier of aging and longevity in . Given the anatomy and hermaphroditic nature of , a major challenge is to distinguish fats that serve the energetic needs of the parent from those that are allocated to the progeny. Broadband coherent anti-Stokes Raman scattering (BCARS) microscopy has revealed that the composition and dynamics of lipid particles are heterogeneous both within and between different tissues of this organism. Using BCARS, we have previously succeeded in distinguishing lipid-rich particles that serve as energetic reservoirs of the parent from those that are destined for the progeny. While BCARS microscopy produces high-resolution images with very high information content, it is not yet a widely available platform. Here we report a new approach combining the lipophilic vital dye Nile Red and two-photon fluorescence lifetime imaging microscopy (2p-FLIM) for the discrimination of lipid particle sub-types. While it is widely accepted that Nile Red staining yields unreliable results for detecting lipid structures in live due to strong interference of autofluorescence and non-specific staining signals, our results show that simple FLIM phasor analysis can effectively separate those signals and is capable of differentiating the non-polar lipid-dominant (lipid-storage), polar lipid-dominant (yolk lipoprotein) particles, and the intermediates that have been observed using BCARS microscopy. An advantage of this approach is that images can be acquired using common, commercially available 2p-FLIM systems within about 10% of the time required to generate a BCARS image. Our work provides a novel, broadly accessible approach for analyzing lipid-containing structures in a complex, live whole organism context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137682PMC
http://dx.doi.org/10.3389/fchem.2023.1161775DOI Listing

Publication Analysis

Top Keywords

bcars microscopy
12
lipid particle
8
particle sub-types
8
two-photon fluorescence
8
fluorescence lifetime
8
lifetime imaging
8
serve energetic
8
nile red
8
bcars
5
identifying lipid
4

Similar Publications

Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms.

Sci Rep

October 2024

Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy.

Article Synopsis
  • Broadband Coherent anti-Stokes Raman (BCARS) microscopy is a fast imaging technique that captures full Raman spectra of biological samples, but the results can be distorted by a non-resonant background (NRB) signal.
  • Traditionally, NRB was removed with complex numerical algorithms, but recent advancements in deep learning have made it possible to automate and speed up this process.
  • The paper reviews existing deep-learning models for NRB removal and introduces two new architectures, finding that CNN + GRU and VECTOR networks offer the best accuracy, while GAN excels in identifying true positive peaks and is suitable for real-time processing.
View Article and Find Full Text PDF

Broadband Coherent Anti-Stokes Raman Scattering (BCARS) is a valuable spectroscopic imaging tool for visualizing cellular structures and lipid distributions in biomedical applications. However, the inevitable biological changes in the samples (cells/tissues/lipids) introduce spectral variations in BCARS data and make analysis challenging. In this work, we conducted a systematic study to estimate the biological variance in BCARS data of two commonly used cell lines (HEK293 and HepG2) in biomedical research.

View Article and Find Full Text PDF

Raman spectroscopy has long been known to provide sufficient information to discriminate distinct cell phenotypes. Underlying this discriminating capability is that Raman spectra provide an overall readout of the metabolic profiles that change with transcriptomic activity. Robustly associating Raman spectral changes with the regulation of specific signaling pathways may be possible, but the spectral signals of interest may be weak and vary somewhat among individuals.

View Article and Find Full Text PDF

Full-Spectrum CARS Microscopy of Cells and Tissues with Ultrashort White-Light Continuum Pulses.

J Phys Chem B

June 2023

Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.

Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging nonlinear vibrational imaging technique that delivers label-free chemical maps of cells and tissues. In narrowband CARS, two spatiotemporally superimposed picosecond pulses, pump and Stokes, illuminate the sample to interrogate a single vibrational mode. Broadband CARS (BCARS) combines narrowband pump pulses with broadband Stokes pulses to record broad vibrational spectra.

View Article and Find Full Text PDF

Fat metabolism is an important modifier of aging and longevity in . Given the anatomy and hermaphroditic nature of , a major challenge is to distinguish fats that serve the energetic needs of the parent from those that are allocated to the progeny. Broadband coherent anti-Stokes Raman scattering (BCARS) microscopy has revealed that the composition and dynamics of lipid particles are heterogeneous both within and between different tissues of this organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!