Background: Mass cytometry (CyTOF) gives unprecedented opportunity to simultaneously measure up to 40 proteins in single cells, with a theoretical potential to reach 100 proteins. This high-dimensional single-cell information can be very useful in dissecting mechanisms of cellular activity. In particular, measuring abundances of signaling proteins like phospho-proteins can provide detailed information on the dynamics of single-cell signaling processes. However, computational analysis is required to reconstruct such networks with a mechanistic model.
Methods: We propose our Mass cytometry Signaling Network Analysis Code (McSNAC), a new software capable of reconstructing signaling networks and estimating their kinetic parameters from CyTOF data. McSNAC approximates signaling networks as a network of first-order reactions between proteins. This assumption often breaks down as signaling reactions can involve binding and unbinding, enzymatic reactions, and other nonlinear constructions. Furthermore, McSNAC may be limited to approximating indirect interactions between protein species, as cytometry experiments are only able to assay a small fraction of protein species involved in signaling.
Results: We carry out a series of experiments here to show (1) McSNAC is capable of accurately estimating the ground-truth model in a scalable manner when given data originating from a first-order system; (2) McSNAC is capable of qualitatively predicting outcomes to perturbations of species abundances in simple second-order reaction models and in a complex nonlinear signaling network in which some proteins are unmeasured.
Conclusions: These findings demonstrate that McSNAC can be a valuable screening tool for generating models of signaling networks from time-stamped CyTOF data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134772 | PMC |
http://dx.doi.org/10.15302/j-qb-022-0308 | DOI Listing |
Sci Rep
December 2024
College of Information Engineering, SuQian University, SuQian, 223800, China.
The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.
View Article and Find Full Text PDFSci Rep
December 2024
Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.
Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Henan College of Transportation, Zhengzhou, 450000, Henan, China.
Novel Human Activity Recognition (HAR) methodologies, which are built upon learning algorithms and employ ubiquitous sensors, have achieved remarkable precision in the identification of sports activities. Such progress benefits all age groups of humanity, and in the future, AI will be used to address difficult problems in scientific research. A novel approach is introduced in this article to utilize motion sensor data in order to categorize and distinguish various categories of sports activities.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China.
Addressing the issues of a single-feature input channel structure, scarcity of training fault data, and insufficient feature learning capabilities in noisy environments for intelligent diagnostic models of mechanical equipment, we propose a method based on a one-dimensional and two-dimensional dual-channel feature information fusion convolutional neural network (1D_2DIFCNN). By constructing a one-dimensional and two-dimensiona dual-channel feature information fusion convolutional network and introducing a Convolutional Block Attention Mechanism, we utilize Random Overlapping Sampling Technique to process raw vibration signals. The model takes as inputs both one-dimensional data and two-dimensional Continuous Wavelet Transform images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!