Docosahexaenoic acid (DHA) is a biologically active fatty acid that reduces the accumulation of lipids. However, the molecular mechanism underlying this process, particularly in fish, is not well understood. Recent studies show that endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response, which has been revealed to play an essential role in lipid metabolism. In this study, we explored the effect of DHA on ER stress and investigated the potential molecular mechanisms underlying DHA-induced adipocyte lipolysis in grass carp () both in vivo and in vitro. We found that DHA remarkably reduced the triglyceride content, increased the secretion of glycerol, promoted lipolysis in adipocytes and evoked ER stress, whereas inhibiting ER stress using 4-phenyl butyric acid (4-PBA) inhibited the effects of DHA ( < 0.05). These results implied that ER stress potentially participates in DHA-induced adipocyte lipolysis. Additionally, STF-083010, a specific inositol-requiring enzyme 1α (IRE1α)-inhibitor, attenuated the effects of DHA on lipolysis, demonstrating that IRE1α and X-box binding protein 1 potentially participate in DHA-induced lipolysis. DHA also activated the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway by increasing the level of cAMP and activating the PKA enzyme ( < 0.05). Nevertheless, H89, a PKA inhibitor, weakened DHA-induced lipolysis by inhibiting the cAMP/PKA signaling pathway. Furthermore, inhibiting ER stress using 4-PBA also inhibited lipolysis and alleviated DHA-induced activation of the cAMP/PKA signaling pathway, suggesting that ER stress may participate in DHA-induced lipolysis through the activation of the cAMP/PKA signaling pathway. Our data illustrate that DHA supplementation can be a promising nutritional strategy for ameliorating lipid accumulation in grass carp. The present study elucidated the molecular mechanism for DHA-induced lipolysis in grass carp adipocytes and emphasized the importance of ER stress and the cAMP/PKA pathway in DHA-induced lipolysis. These results deepen our understanding of ameliorating lipids deposition in freshwater fish by targeting DHA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131065 | PMC |
http://dx.doi.org/10.1016/j.aninu.2022.10.010 | DOI Listing |
Elife
January 2025
Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, United States.
It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.
Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.
Int J Mol Sci
December 2024
Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
MicroRNAs (miRNAs) are short sequences of single-stranded non-coding RNAs that target messenger RNAs, leading to their repression or decay. Interestingly, miRNAs play a role in the cellular response to low oxygen levels, known as hypoxia, which is associated with reactive oxygen species and oxidative stress. However, the physiological implications of hypoxia-induced miRNAs ("hypoxamiRs") remain largely unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!