Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding mechanistic details of the nickel-catalyzed coupling reactions of Csp alcohol derivatives is key to developing selective reactions of this widely prevalent functional group. In this manuscript, we utilize a combination of experimental data and DFT studies to define the key intermediates, stereochemical outcome, and competing pathways of a nickel-catalyzed cross-electrophile coupling reaction of 1,3-dimesylates. Stereospecific formation of a 1,3-diiodide intermediate is achieved in situ by the Grignard reagent. The overall stereoablative stereochemical outcome is due to a nickel-catalyzed halogen atom abstraction with a radical rebound that is slower than epimerization of the alkyl radical. Finally, lifetimes of this alkyl radical intermediate are compared to radical clocks to enhance the understanding of the lifetime of the secondary alkyl radical.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127265 | PMC |
http://dx.doi.org/10.1021/acscatal.3c00905 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!