Lattice structures are composed of a collection of struts with different orientations. During slicing, the inclined struts generate multiple disjoint contours along the build direction in additive manufacturing (AM). These contours are substantially smaller in size due to the narrow cross-section of the individual lattice struts, and they can lead to contour plurality in AM processes. Contour plurality reduces the amount of continuous contact region between two successive layers, thus resulting in poor interlayer adhesion, structural integrity, and mechanical properties of the printed lattice structure. A new interlocking and assemble-based lattice structure building approach is investigated by increasing continuity in layers and avoiding support structure to minimize contour plurality. Two lattice configurations in the form of cubic and octet lattice structures are examined. The compressive performance of the designed lattice structures is compared with the traditional single-build direct three-dimensional printed lattice structures. The mechanical performance (e.g., peak stress, specific energy absorption) of the assembled structures is found to be generally better than their direct print counterparts. The empirical constants of Ashby-Gibson power law are found to be larger than their suggested values in both direct print and assembly techniques. However, their values are more compliant for octet assembled structures, which are less susceptible to manufacturing imperfections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133982 | PMC |
http://dx.doi.org/10.1089/3dp.2021.0207 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Despite the remarkable advancements in hypervalent iodine chemistry, exploration of bromine and chlorine analogues remains in its infancy due to their difficult synthesis. Herein, we introduce six-membered cyclic λ3-bromanes and λ3-chloranes. Through single-crystal X-ray structural analyses and conformational studies, we delineate the crucial bonding patterns pivotal for the thermodynamic stability of these compounds.
View Article and Find Full Text PDFJ Anat
January 2025
Bonn Institute of Organismal Biology, Paleontology, University of Bonn, Bonn, Germany.
Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing Normal University, School of Chemistry and Materials Science, CHINA.
Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.
View Article and Find Full Text PDFSmall
January 2025
Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan.
Moiré superlattices formed in van der Waals (vdW) bilayers of 2D materials provide an ideal platform for studying previously undescribed physics, including correlated electronic states and moiré excitons, owing to the wide-range tunability of their lattice constants. However, their crystal symmetry is fixed by the monolayer structure, and the lack of a straightforward technique for modulating the symmetry of moiré superlattices has impeded progress in this field. Herein, a simple, room-temperature, ambient method for controlling superlattice symmetry is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!