Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Powder-based (inkjet) three-dimensional printing (3DP) technology presents great promise in the construction industry. The capacity to build complex geometries is one of the most appealing features of the process without formwork. This article focuses on the vital aspect of using a modified powder (CP) instead of commercial powder (ZP 151). It also discusses the effects of the size of specimens and the curing process of 3DP specimens. This article presents not only the improved mechanical properties of the mortar that are revealed through a heat-curing procedure but also the properties of the reinforced mortar with chopped glass fibers. Experiments are conducted on cubic printed mortar specimens and cured in an oven at different temperature regimes. Tests show that 80°C is the optimum heat-curing temperature to attain the highest compressive and flexural strength of the specimens. The orientation angle has a significant effect on the mechanical behavior of printed specimens. Therefore, specimens are prepared by printing at different orientation angles to compare the mechanical properties of common construction materials. Powder-based 3DP has three planes (, , and ) along which a load can be applied to the specimen. The mechanical strength in each direction across each plane is different, making it an anisotropic material. For CP specimens, the highest compressive strength was obtained using a 0° rotation in the printing orientation of the plane. For shear strength, a 45° orientation gave the optimum result, while for tensile and flexural strength, a 0° orientation provided the highest values. The optimum strength for ZP 151 specimens in compression, shear, tension, and bending was obtained by printing with orientation angles of 0°, 30°, 0°, and 0°, respectively. Finally, laser scanning of the printed specimens has been conducted so the surface roughness profiles for the 3DP specimens of ZP 151 and CP can be compared and presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133986 | PMC |
http://dx.doi.org/10.1089/3dp.2021.0067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!