The last decade has witnessed the emergence of innovative synthetic tools for the synthesis of fluorinated molecules. Among these approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XR, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed functionalization of C(sp) and C(sp) centers with SCF, SeCF, or OCHCF groups among others, by C-H bond activation. The scope and limitations of these transformations are discussed in this review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130906 | PMC |
http://dx.doi.org/10.3762/bjoc.19.35 | DOI Listing |
Life (Basel)
November 2024
Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt.
This study investigated the biosynthesis, statistical optimization, characterization, and biocontrol activity of silver nanoparticles (AgNPs) produced by newly isolated sp. The strain TA-3N was identified based on the ITS gene sequence, together with its phenotypic characteristics (GenBank accession number: OM321439). The color change from light yellow to brown after the incubation period indicates AgNPs biosynthesis.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Melbourne, School of Chemistry, 30 Flemington Rd., VIC 3095, Parkville, AUSTRALIA.
Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including an unprecedented example of C-H arylation of an internal residue.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!