Background: The purpose of this research was to show how the Bragg peak (BP) characteristics were affected by changing the voxel size in longitudinal and transverse directions in Monte Carlo (MC) simulations by using Geant4 and to calculate BP characteristics accurately by considering the voxel size effect for 68 MeV and 235.81 MeV.
Materials And Methods: Different interpolation techniques were applied to simulation data to find the closest results to the experimental data.
Results: When the x-size of the voxel was increased 2 times at low energy, the maximum dose increase in the entrance and plateau regions were 17.8% and 17%, respectively, while BP curve shifted to the shallower region, resulting in a 0.5 mm reduction in the curable tumor width (W). At high energy, the maximum dose increase at the entrance and plateau regions were 0.4% and 0.6%, respectively, while it was observed that W did not change. When the y-z sizes of the voxel were increased 2 times at low energy, the maximum dose reduction at the entrance and plateau regions was 3.4%, but no change was observed in W. At high energy, when the y-z sizes of the voxel were increased 2.2 times, the maximum dose reduction at the entrance and plateau regions were 8.9% and 9.1%, respectively, while W increased by 0.5 mm. When linear, cubic spline, and Akima interpolations were applied to the simulation data, it was found that the results closest to the experimental data were obtained for Akima interpolations for both energies.
Conclusion: it has been shown that the voxel size effect for the longitudinal direction was more effective at low energy than at high energy. However, the voxel size effect for the transverse direction was more effective for high energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132192 | PMC |
http://dx.doi.org/10.5603/RPOR.a2023.0007 | DOI Listing |
Neurourol Urodyn
December 2024
Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Introduction: Detrusor contractions can be classified as either volitional or involuntary. The latter are a hallmark of urge urinary incontinence. Understanding differences in neuroactivation associated with both types of contractions can help elucidate pathophysiology and therapeutic targets.
View Article and Find Full Text PDFRadiat Oncol
December 2024
Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
Background And Purpose: Timely identification of local failure after stereotactic radiotherapy for brain metastases allows for treatment modifications, potentially improving outcomes. While previous studies showed that adding radiomics or Deep Learning (DL) features to clinical features increased Local Control (LC) prediction accuracy, their combined potential to predict LC remains unexplored. We examined whether a model using a combination of radiomics, DL and clinical features achieves better accuracy than models using only a subset of these features.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
Background: This study aims to evaluate the impact of different thresholds and voxel sizes on the accuracy of Cone-beam computed tomography (CBCT) tooth reconstruction and to assess the accuracy of fused CBCT and intraoral scanning (IOS) tooth models using curvature continuity algorithms under varying thresholds and voxel conditions.
Methods: Thirty-two isolated teeth were digitized using IOS and CBCT at two voxel sizes and five threshold settings. Crown-root fusion was performed using a curvature continuity algorithm.
IEEE Access
November 2024
University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
The achievable spatial resolution of C metabolic images acquired with hyperpolarized C-pyruvate is worse than H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution C cardiac MRI by utilizing structural information from H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice C MRI.
View Article and Find Full Text PDFNMR Biomed
February 2025
CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay H-MRSI sequence (H-FID-MRSI) in the rat brain at 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!