Decellularized extracellular matrix (dECM) has emerged as a promising biomaterial in the fields of tissue engineering and regenerative medicine due to its ability to provide specific biochemical and biophysical cues supportive of the regeneration of diverse tissue types. Such biomaterials have also been used to produce tissue-specific inks and bioinks for 3D printing applications. However, a major limitation associated with the use of such dECM materials is their poor mechanical properties, which limits their use in load-bearing applications such as meniscus regeneration. In this study, native porcine menisci were solubilized and decellularized using different methods to produce highly concentrated dECM inks of differing biochemical content and printability. All dECM inks displayed shear thinning and thixotropic properties, with increased viscosity and improved printability observed at higher pH levels, enabling the 3D printing of anatomically defined meniscal implants. With additional crosslinking of the dECM inks following thermal gelation at pH 11, it was possible to fabricate highly elastic meniscal tissue equivalents with compressive mechanical properties similar to the native tissue. These improved mechanical properties at higher pH correlated with the development of a denser network of smaller diameter collagen fibers. These constructs also displayed repeatable loading and unloading curves when subjected to long-term cyclic compression tests. Moreover, the printing of dECM inks at the appropriate pH promoted a preferential alignment of the collagen fibers. Altogether, these findings demonstrate the potential of 3D printing of highly concentrated meniscus dECM inks to produce mechanically functional and biocompatible implants for meniscal tissue regeneration. This approach could be applied to a wide variety of different biological tissues, enabling the 3D printing of tissue mimics with diverse applications from tissue engineering to surgical planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130628 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2023.100624 | DOI Listing |
Bioact Mater
March 2025
Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea.
Biomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion.
View Article and Find Full Text PDFSci Rep
November 2024
Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
Decellularized extracellular matrix (dECM) bioinks hold significant potential in the 3D bioprinting of tissue-engineered constructs (TECs). While 3D bioprinting allows for the creation of custom-designed TECs, the development of bioinks based solely on dAM, without the inclusion of supporting agents or chemical modifications, remains underexplored. In this study, we present the concentration-dependent printability and rheological properties of dAM bioinks, along with an analysis of their in vitro cellular responses.
View Article and Find Full Text PDFBiofabrication
August 2024
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea.
Biofabrication
August 2024
Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences (CALS), Chonnam National University, Gwangju 61186, Republic of Korea.
Three-dimensional (3D) bioprinting has revolutionized tissue engineering by enabling the fabrication of complex and functional human tissues and organs. An essential component of successful 3D bioprinting is the selection of an appropriate bioink capable of supporting cell proliferation and viability. Plant-derived biomaterials, because of their abundance, biocompatibility, and tunable properties, hold promise as bioink sources, thus offering advantages over animal-derived biomaterials, which carry immunogenic concerns.
View Article and Find Full Text PDFAdv Healthc Mater
October 2024
Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain s/n, Donostia-San Sebastián, 20014, Spain.
There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!