Plasmonic nanoantennas have considerably stronger polarization-dependent optical properties than their molecular counterparts, inspiring photonic platforms for enhancing molecular dichroism and providing fundamental insight into light-matter interactions. One such insight is that even achiral nanoparticles can yield strong optical activity when they are asymmetrically illuminated from a single oblique angle instead of evenly illuminated. This effect, called extrinsic chirality, results from the overall chirality of the experimental geometry and strongly depends on the orientation of the incident light. Although extrinsic chirality has been well-characterized, an analogous effect involving linear polarization sensitivity has not yet been discussed. In this study, we investigate the differential scattering of rotationally symmetric chiral plasmonic pinwheels when asymmetrically irradiated with linearly polarized light. Despite their high rotational symmetry, we observe substantial linear differential scattering that is maintained over all pinwheel orientations. We demonstrate that this orientation-independent linear differential scattering arises from the broken mirror and rotational symmetries of our overall experimental geometry. Our results underscore the necessity of considering both the rotational symmetry of the nanoantenna and the experimental setup, including illumination direction and angle, when performing plasmon-enhanced chiroptical characterizations. Our results demonstrate spectroscopic signatures of an effect analogous to extrinsic chirality for linear polarizations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131493PMC
http://dx.doi.org/10.1021/cbmi.2c00005DOI Listing

Publication Analysis

Top Keywords

differential scattering
16
linear differential
12
extrinsic chirality
12
chiral plasmonic
8
plasmonic pinwheels
8
orientation-independent linear
8
experimental geometry
8
rotational symmetry
8
linear
5
pinwheels exhibit
4

Similar Publications

UV-irradiation is a stress factor for proteins, leading to disruption of their native structure. Test systems based on UV-irradiated proteins are relevant for researchers, as they allow working directly with damaged protein molecules, which can be important when studying the properties and mechanisms of action of various antiaggregation agents. The study of UV-irradiated proteins can also have applied significance, including medical.

View Article and Find Full Text PDF

Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy.

Int J Nanomedicine

January 2025

College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.

Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.

View Article and Find Full Text PDF

Objectives: This study focuses on both the formulation of bio-based microspheres containing fampridine for the treatment of multiple sclerosis and provides an alternative to the commercially available product (Fampyra 10 mg, Biogen).

Materials And Methods: The encapsulation of fampridine was achieved using polyvinyl alcohol (PVA) and sodium alginate (Na-Alg) polymers. Glutaraldehyde (GA) and hydrochloric acid (HCI) were used as crosslinking agents.

View Article and Find Full Text PDF

The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).

View Article and Find Full Text PDF

Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!