Significance: In photoacoustic tomography (PAT), numerous reconstruction algorithms have been utilized to recover initial pressure rise distribution from the acquired pressure waves. In practice, most of these reconstructions are carried out on a desktop/workstation and the mobile-based reconstructions are far-flung. In recent years, mobile phones are becoming so ubiquitous, and most of them encompass a higher computing ability. Hence, realizing PAT image reconstruction on a mobile platform is intrinsic, and it will enhance the adaptability of PAT systems with point-of-care applications.
Aim: To implement PAT image reconstruction in Android-based mobile platforms.
Approach: For implementing PAT image reconstruction in Android-based mobile platforms, we proposed an Android-based application using Python to perform beamforming process in Android phones.
Results: The performance of the developed application was analyzed on different mobile platforms using both simulated and experimental datasets. The results demonstrate that the developed algorithm can accomplish the image reconstruction of small animal brain dataset in 2.4 s. Furthermore, the developed application reconstructs PAT images with comparable speed and no loss of image quality compared to that on a laptop. Employing a two-fold downsampling procedure could serve as a viable solution for reducing the time needed for beamforming while preserving image quality with minimal degradation.
Conclusions: We proposed an Android-based application that achieves image reconstruction on cheap, small, and universally available phones instead of relatively bulky expensive desktop computers/laptops/workstations. A beamforming speed of 2.4 s is achieved without hampering the quality of the reconstructed image.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133999 | PMC |
http://dx.doi.org/10.1117/1.JBO.28.4.046009 | DOI Listing |
PLoS One
January 2025
Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Information Technology, Politeknik Negeri Padang, Padang, Sumatera Barat, Indonesia.
Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Objectives: To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules.
Materials And Methods: Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV.
Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
Purpose: This study aimed to clarify the applicability of smartphone-based three-dimensional (3D) surface imaging for clinical use in oral and maxillofacial surgery, comparing two smartphone-based approaches to the gold standard.
Methods: Facial surface models (SMs) were generated for 30 volunteers (15 men, 15 women) using the Vectra M5 (Canfield Scientific, USA), the TrueDepth camera of the iPhone 14 Pro (Apple Inc., USA), and the iPhone 14 Pro with photogrammetry.
Eur Radiol
January 2025
Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
Objectives: To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain compared to low-dose CT (LDCT) and ULDCT without DLIR.
Materials And Methods: A total of 210 patients undergoing lung cancer screening underwent LDCT (mean ± SD, 0.81 ± 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!