A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of eight Bayesian genomic prediction models for three micronutrient traits in bread wheat (Triticum aestivum L.). | LitMetric

AI Article Synopsis

  • The study evaluated genomic prediction accuracy (GPA) for micronutrient traits in wheat using eight Bayesian regression models on a dataset of 246 accessions with 17,937 DArT markers.
  • The Bayes ridge regression (BayesRR) model showed the highest GPA accuracy, while BayesLASSO (BayesL) performed the weakest; GPA improved with larger training sets and higher marker density.
  • The findings indicate that using the best model is crucial for estimating genomic breeding values (GEBVs) to enhance the grain micronutrient content.

Article Abstract

In wheat, genomic prediction accuracy (GPA) was assessed for three micronutrient traits (grain iron, grain zinc, and β-carotenoid concentrations) using eight Bayesian regression models. For this purpose, data on 246 accessions, each genotyped with 17,937 DArT markers, were utilized. The phenotypic data on traits were available for 2013-2014 from Powerkheda (Madhya Pradesh) and for 2014-2015 from Meerut (Uttar Pradesh), India. The accuracy of the models was measured in terms of reliability, which was computed following a repeated cross-validation approach. The predictions were obtained independently for each of the two environments after adjusting for the local effects and across environments after adjusting for the environmental effects. The Bayes ridge regression (BayesRR) model outperformed the other seven models, whereas BayesLASSO (BayesL) was the least efficient. The GPA increased with an increase in the size of the training set as well as with an increase in marker density. The GPA values differed for the three traits and were higher for the best linear unbiased estimate (BLUE) (obtained after adjusting for the environmental effects) relative to those for the two environments. The GPA also remained unaffected after accounting for the population structure. The results of the present study suggest that only the best model should be used for the estimations of genomic estimated breeding values (GEBVs) before their use for genomic selection to improve the grain micronutrient contents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tpg2.20332DOI Listing

Publication Analysis

Top Keywords

genomic prediction
8
three micronutrient
8
micronutrient traits
8
environments adjusting
8
adjusting environmental
8
environmental effects
8
evaluation bayesian
4
genomic
4
bayesian genomic
4
models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!