Diacylglycerol (DAG) is commonly known as one of the precursors for the 3-monochloro-1,2-propanediol esters (3-MCPDE) and glycidyl esters (GE) formation. However, due to its health-promoting effects, its potential as alternative frying medium was examined. This study aimed to assess the frying performance of soybean oil-based diacylglycerol oil (DO) and its oil blends with palm olein (PO), in comparison with PO. Four different oil types (DO, PO, OB I (DO:PO, 1:1, w/w) and OB II (DO:PO, 1:2, w/w)) were used to fry potato chips for five consecutive days at 180℃. The formation of oxidation compounds, acylglycerol composition, 3-MCPDE and GE changes throughout the frying study were investigated. Both OB I and OB II exhibited lower oxidation compounds' formation rates than PO. Besides, significant (p < 0.05) reductions of 3-MCPDE and increments of GE levels were observed in all frying systems throughout the frying study. After 25 frying cycles, the 3-MCPDE levels in all frying oils were below 0.13 mg/kg, while the GE levels ranged from 1.51 mg/kg to 1.89 mg/kg. Despite the poorer oxidative stability of DO, its 3-MCPDE and GE levels were much lower compared to PO. In comparison to DO, the 3-MCPDE degradation and GE formation rates were enhanced and reduced, respectively with the blending of PO and DO. This study showed the potential of DO:PO oil blend in deep-fat frying application. With appropriate blending ratio of DO and PO, an alternative frying medium with enhanced nutritional value and oxidative stability could be developed.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess22361DOI Listing

Publication Analysis

Top Keywords

frying
9
deep-fat frying
8
soybean oil-based
8
oil blends
8
stability 3-mcpde
8
3-mcpde glycidyl
8
alternative frying
8
frying medium
8
dopo w/w
8
frying study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!