A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced in vitro and in vivo anticancer activity through the development of Sunitinib-Loaded nanoniosomes with controlled release and improved uptake. | LitMetric

This study aims to develop sunitinib niosomal formulations and assess their in-vitro anti-cancer efficiency against lung cancer cell line, A549. Sunitinib, a highly effective anticancer drug, was loaded in the niosome with high encapsulation efficiency. Collagen was coated on the surface of the niosome for enhanced cellular uptake and prolonged circulation time. Different formulations were produced, while response surface methodology was utilized to optimize the formulations. The stability of the formulations was evaluated over a 2-month period, revealing the importance of collagen coating. MTT assay demonstrated dose-dependent cytotoxicity for all formulations against lung cancer cells. Scratch assay test suggested antiproliferative efficacy of the formulations. The flow cytometry data confirmed the improved cytotoxicity with enhanced apoptosis rate when different formulations used. The 2D fluorescent images proved the presence of drug-containing niosomes in the tumor cells. The activation of the apoptotic pathway leading to protein synthesis was confirmed using an ELISA assay, which specifically evaluated the presence of cas3 and cas7. The results of this study indicated the antiproliferative efficacy of optimized niosomal formulations and their mechanism of action. Therefore, niosomes could be utilized as a suitable carrier for delivering sunitinib into lung cancer cells, paving the way for future clinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.122977DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
formulations
8
niosomal formulations
8
cancer cells
8
antiproliferative efficacy
8
enhanced vitro
4
vitro vivo
4
vivo anticancer
4
anticancer activity
4
activity development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!