The jackfruit is the largest fruit on the Earth, reaching upwards of 35 kg and falling from heights of 25 m. To survive such high energy impacts, it has evolved a unique layered configuration with a thorny exterior and porous tubular underlayer. During compression, these layers exhibit a progressive collapse mechanism where the tubules are first to deform, followed by the thorny exterior, and finally the mesocarp layer in between. The thorns are composed of lignified bundles which run longitudinally from the base of the thorn to the tip and are embedded in softer parenchymal cells, forming a fiber reinforced composite. The mesocarp contains more lignin than any of the other layers while the core appears to contain more pectin giving rise to variations in compressive and viscoelastic properties between the layers. The surface thorns provide a compelling impact-resistant feature for bioinspiration, with a cellular structure that can withstand large deformation without failing and wavy surface features which densify during compression without fracturing. Even the conical shape of the thorns is valuable, presenting a gradually increasing surface area during axial collapse. A simplified model of this mechanism is put forward to describe the force response of these features. The thorns also distribute damage laterally during impact and deflect cracks along their interstitial valleys. These phenomena were observed in 3D printed, jackfruit-inspired designs which performed markedly better than control prints with the same mass. STATEMENT OF SIGNIFICANCE: Many biological materials have evolved remarkable structures that enhance their mechanical performance and serve as sources of inspiration for engineers. Plants are often overlooked in this regard yet certain botanical components, like nuts and fruit, have shown incredible potential as blueprints for improved impact resistant designs. The jackfruit is the largest fruit on Earth and generates significant falling impact energies. Here, we explore the jackfruit's structure and its mechanical capabilities for the first time. The progressive failure imparted by its multilayered design and the unique collapse mode of the surface thorns are identified as key mechanisms for improving the fruit's impact resistance. 3D printing is used to show that these structure-property benefits can be successfully transferred to engineering materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.04.040DOI Listing

Publication Analysis

Top Keywords

largest fruit
12
fruit earth
12
impact resistance
8
jackfruit largest
8
thorny exterior
8
surface thorns
8
impact
5
thorns
5
jackfruit composition
4
composition structure
4

Similar Publications

Background And Objective: Gastric cancer (GC) remains a significant global health challenge, characterized by high incidence and mortality rates, particularly in East Asia. A comprehensive understanding of the disease burden of gastric cancer is crucial for developing effective prevention and treatment strategies. However, comprehensive global assessments of the disease burden of gastric cancer remain limited.

View Article and Find Full Text PDF

Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from f. sp. .

Plants (Basel)

December 2024

Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Extracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.

View Article and Find Full Text PDF

Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS.

Int J Mol Sci

December 2024

Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.

Flavor is the most important feature consumers use to examine fruit ripeness, and it also has an important influence on taste sensation. Nowadays, more and more consumers pay much attention not only to the appearance but also to the fruit's aroma. Exploiting the potential of headspace solid-phase microextraction (HS-SPME) combined with sensitive two-dimensional gas chromatography and the time-of-flight mass spectrometry (GC/GC-ToF-MS) method within 30 old/traditional cultivars of apples ( Borkh) coming from the same germplasm and 7 modern/commercial cultivars, 119 volatile organic compounds (VOCs) were identified.

View Article and Find Full Text PDF

The increasing frequency of low-temperature events in spring, driven by climate change, poses a serious threat to wheat production in Northern China. Understanding how low-temperature stress affects wheat yield and its components under varying moisture conditions, and exploring the role of irrigation before exposure to low temperatures, is crucial for food security and mitigating agricultural losses. In this study, four wheat cultivars-semi-spring (YZ4110, LK198) and semi-winter (ZM366, FDC21)-were tested across two years under different conditions of soil moisture (irrigation before low-temperature exposure (IBLT) and non-irrigation (NI)) and low temperatures (-2 °C, -4 °C, -6 °C, -8 °C, and -10 °C).

View Article and Find Full Text PDF

The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!