Seizures are among the most common clinical signs in people with glioblastoma. Advances over the past 5 years, including new clinical trial data, have increased the understanding of why some individuals with glioblastoma are susceptible to seizures, how seizures manifest clinically, and what implications seizures have for patient management. The pathophysiology of epilepsy in people with glioblastoma relates to a combination of intrinsic epileptogenicity of tumour tissue, alterations in the tumour and peritumoural microenvironment, and the physical and functional disturbance of adjacent brain structures. Successful management of epilepsy in people with glioblastoma remains challenging; factors such as drug-drug interactions between cancer therapies and antiseizure medications, and medication side-effects, can affect seizure outcomes and quality of life. Advances in novel therapies provide some promise for people with glioblastoma; however, the effects of these therapies on seizures are yet to be fully determined. Looking forward, insights into electrical activity as a driver of tumour cell growth and the intrinsic hyperexcitability of tumour tissue might represent useful targets for treatment and disease modification. There is a pressing need for large randomised clinical trials in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1474-4422(23)00031-5 | DOI Listing |
Cochrane Database Syst Rev
January 2025
Saúde Baseada em Evidências, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
Background: Glioblastoma multiforme (GBM) is the most common and aggressive adult glioma (16-month median survival). Its immunosuppressive microenvironment limits the efficacy of immune checkpoint inhibitors (ICIs).
Objectives: To assess the effects of the ICIs antibodies anti-programmed cell death 1 (anti-PD-1) and anti-programmed cell death ligand 1 (anti-PD-L1) in treating adults with diffuse glioma.
Neuromolecular Med
January 2025
Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.
Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia.
Glioblastoma (GBM) characterized byits rapid progression and challenging prognosis, often featuring mutations in the Kirsten rat sarcoma virus (KRAS) gene, which is crucial for numerous cellular signaling mechanisms. Emerging research underscores a significant interaction between KRAS and microRNAs (miRNAs) in these cancers, with miRNAs playing key roles as both regulators and mediators within the KRAS signaling framework. The concept of oncogene-induced senescence (OIS) is explored as a protective mechanism against tumor development, examining how K-RAS signaling is meticulously adjusted to bypass senescence, thereby enhancing cell growth and survival.
View Article and Find Full Text PDFToxics
November 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
DEHP is a plasticizer that is widely found in our water environment and poses a significant risk to the environment and human health. Long-term exposure to DEHP can cause endocrine disruption and interfere with the organism's normal functioning. In order to explore the potential effects of DEHP on the development of biological brain tissues, this study used bioinformatics analysis to confirm the diagnostic and prognostic value of PER3 in gliomas and further validated the neurotoxicity of DEHP using methods such as behavioral experiments and molecular biology in zebrafish.
View Article and Find Full Text PDFCancer Cell
December 2024
National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:
Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!