All-in-one strategy to prepare molded biochar with magnetism from sewage sludge for high-efficiency removal of Cd(Ⅱ).

J Hazard Mater

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.

Published: July 2023

Biochar in powder could lead to the separation difficulties after using and easy dispersion by wind with non-necessary consumption during the practical application. The current method for preparing molded biochar is multi-step, tedious, and required exogenous reagents. Moreover, the dehydration of sewage sludge with high water content (>85%) causes expensive production cost, limiting its secondary utilization. Therefore, an "all-in-one" strategy was developed to prepare molded biochar with magnetism by using sewage sludge as endogenetic binder, water source, carbon source, as well as magnetic source, and biomass wastes as water moderator and pore-forming agent. The molded biochar showed high removal capacity towards Cd(Ⅱ) of 456.2 mg/g, which was 6 times higher than the commercial activated carbon in powder (69.1 mg/g). The excellent removal performance of the molded biochar was in linear correlation the O/C ratio (R =0.855), resulting in the complexation with Cd(Ⅱ). DFT calculations indicated the amounts and species of oxygen changed the electron distribution and electron-donation properties of biochar for Cd(Ⅱ). Moreover, the Na exchanges with Cd(Ⅱ) were also an important removal mechanism. This study provided a novel synthesis strategy for the molded biochar with both high particle density and high adsorption capability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131488DOI Listing

Publication Analysis

Top Keywords

molded biochar
24
sewage sludge
12
prepare molded
8
biochar
8
biochar magnetism
8
magnetism sewage
8
biochar high
8
molded
6
cdⅡ
5
all-in-one strategy
4

Similar Publications

Soil aggregation alterations under soil microplastic and biochar addition and aging process.

Environ Pollut

January 2025

School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.

Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation.

View Article and Find Full Text PDF

spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.

View Article and Find Full Text PDF

An efficient fungi-biochar-based system for advancing sustainable management of combined pollution.

Environ Pollut

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:

Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.

View Article and Find Full Text PDF

Biochar reduces containerized pepper blight caused by Phytophthora Capsici.

Sci Rep

December 2024

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.

Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.

View Article and Find Full Text PDF

White root rot disease caused by Rosellinia necatrix is a growing issue in orchards, and biochar pyrolyzed from the pruned branch residues of fruit trees has potential as a soil amendment agent with a number of benefits, such as long-term carbon sequestration. However, the effects of pruned branch biochar on white root rot disease remain unclear. Therefore, we compared direct antagonism against R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!