A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption of glyphosate and metabolite aminomethylphosphonic acid (AMPA) from water by polymer-based spherical activated carbon (PBSAC). | LitMetric

Adsorption of glyphosate and metabolite aminomethylphosphonic acid (AMPA) from water by polymer-based spherical activated carbon (PBSAC).

J Hazard Mater

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Published: July 2023

Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is its main metabolite. Their occurrence in ground and surface waters causes diseases in humans, while complex physico-chemical properties hinder detection and effective removal. Polymer-based spherical activated carbon (PBSAC) can adsorb many micropollutants efficiently and, hence, overcome the shortfalls of conventional treatment methods. The static adsorption of a mixture of GLY and AMPA by PBSAC was investigated with varying PBSAC properties and relevant solution chemistry. The results show that PBSAC can remove 95% GLY and 57% AMPA from an initial concentration of 1 µg/L at pH 8.2. PBSAC properties (size, activation level, and surface charge) have a strong influence on herbicide removal, where surface area plays a key role. Low to neutral pH favors non-charge interactions and results in good adsorption, while higher temperatures equally enhance GLY/AMPA adsorption by PBSAC. The work demonstrated the effective removal of GLY to meet the European guideline concentration (0.1 µg/L), while AMPA could not be removed to the required level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131211DOI Listing

Publication Analysis

Top Keywords

aminomethylphosphonic acid
8
acid ampa
8
polymer-based spherical
8
spherical activated
8
activated carbon
8
carbon pbsac
8
effective removal
8
pbsac properties
8
pbsac
7
ampa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!