Tyrosine-derived polymeric surfactant nanospheres insert cholesterol in cell membranes.

J Colloid Interface Sci

Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA. Electronic address:

Published: August 2023

Hypothesis: The design of biodegradable tyrosine-derived polymeric surfactants (TyPS) through the use of calculated thermodynamic parameters could lead to phospholipid membrane surface modifiers capable of controlling cellular properties such as viability. Delivery of cholesterol by TyPS nanospheres into membrane phospholipid domains could provide further controlled modulation of membrane physical and biological properties.

Experiment: Calculated Hansen solubility parameters (∂) and hydrophile:lipophile balances (HLB) were applied to design and synthesize a small family of diblock and triblock TyPS with different hydrophobic blocks and PEG hydrophilic blocks. Self-assembled TyPS/cholesterol nanospheres were prepared in aqueous media via co-precipitation. Cholesterol loading and Langmuir film balance surface pressures of phospholipid monolayers were obtained. TyPS and TyPS/cholesterol nanosphere effects on human dermal cell viability were evaluated by cell culture using poly(ethylene glycol) (PEG) and Poloxamer 188 as controls.

Findings: Stable TyPS nanospheres incorporated between 1% and 5% cholesterol. Triblock TyPS formed nanosphere with dimensions significantly smaller than diblock TyPS nanospheres. In accord calculated thermodynamic parameters, cholesterol binding increased with increasing TyPS hydrophobicity. TyPS inserted into phospholipid monolayer films in a manner consistent with their thermodynamic properties and TyPS/cholesterol nanospheres delivered cholesterol into the films. Triblock TyPS/cholesterol nanospheres increased human dermal cell viability, which was indicative of potentially beneficial TyPS effects on cell membrane surface properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.04.045DOI Listing

Publication Analysis

Top Keywords

typs nanospheres
12
typs/cholesterol nanospheres
12
typs
10
tyrosine-derived polymeric
8
calculated thermodynamic
8
thermodynamic parameters
8
membrane surface
8
triblock typs
8
human dermal
8
dermal cell
8

Similar Publications

Tyrosine-derived polymeric surfactant nanospheres insert cholesterol in cell membranes.

J Colloid Interface Sci

August 2023

Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA. Electronic address:

Hypothesis: The design of biodegradable tyrosine-derived polymeric surfactants (TyPS) through the use of calculated thermodynamic parameters could lead to phospholipid membrane surface modifiers capable of controlling cellular properties such as viability. Delivery of cholesterol by TyPS nanospheres into membrane phospholipid domains could provide further controlled modulation of membrane physical and biological properties.

Experiment: Calculated Hansen solubility parameters (∂) and hydrophile:lipophile balances (HLB) were applied to design and synthesize a small family of diblock and triblock TyPS with different hydrophobic blocks and PEG hydrophilic blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!